Following on from
a previous article

— ETI March 1984)
this article outlines a method
of adding commands

(“More functions for the VZ200”

to the standard VZ200 BASIC.

Steve Olney

THE PREVIOUS article showed how to
unlock several ‘hidden’ functions contained
in the VZ200 BASIC ROM by entering the
commands indirectly via a BASIC program
itself. This approach meant that it was nec-
essary to run the BASIC program each time
the function was needed. This is very incon-
venient and, as was hinted at in the previous
article, a more elegant (and more conven-
ient) approach would be to have the added
functions accessed as if they were part of the
original command set.

This article gives a method by which this
can be done and gives a practical example
by making the AUTO command part of the
legal VZ200 BASIC command set.

The machine code necessary to achieve
this is quite short because, as indicated in
the previous article, the code which does
the bulk of the work is already resident in
the VZ200 BASIC ROM. It is only neces-
sary to get the BASIC interpreter to recog-
nise the auto line-numbering command
(AUTO X, Y) as legal and then jump to the
relevant code in ROM.

The method outlined here only applies to
adding commands to the ‘immediate execu-
tion mode’. (i.e: typing in commands with-
out line numbers). It does not deal with
commands that are to be used within
programs.

How it works

Those who are only interested in the end
result of adding the AUTO command to the
legal commands can skip this section and go
straight to the section dealing with entering
the program. Those who are interested in
how it works — read on!

The reason why it is possible to add
commands to the standard VZ200 BASIC
command set (thereby extending it) is that,
in common with some other BASICs, at
various points in the machine code in ROM,
calls are made to locations in RAM. This
makes it feasible to modify and/or extend
the code at a later date. A common
example is where a disk system is added
later. An extended or enhanced BASIC can
be implemented by downloading extra code
off disk to the relevant called location. If all
the code was executed in ROM then this
could not be done.

In a non-disk system (such as the present
VZ200) these called locations are usually
initialised to ‘0C9H’ (H means hex address
of location), which is Z-80 machine code for
Ret. So normally, when these RAM loca-
tions are jumped to via ‘calls’ from the
BASIC ROM, execution returns immedi-
ately to the BASIC ROM via the ‘Ret’.

Now, because the Ret’s are in RAM, it is
possible to change the Ret to a jump to

extra code which will be executed before
control is returned back to the BASIC
ROM.

In the VZ200, all the calls from the
BASIC ROM to RAM are to locations
between 7952H and 79E2H. One of thesc
exits will be used to add Auto X.Y to the
legal command set.

The BASIC interpreter

Leaving the ROM exits for the moment,
consider what happens when an ‘immediate
execution’ command is entered. While the
text is being typed in, the character codes
for cach key-press are being entered into a
text buffer at around 79E8H. When Return
is hit, the interpreter looks at what has becn
entered into the buffer. Scanning from left
to right, it looks for ‘reserved words’ (words
set aside for commands e.g: Print, List
etc.). The BASIC ROM contains a list of
these reserved words beginning at 1650H
and ending at 1820H. This can be revealed
by an ASCII dump of this block of memory
(the first letter of each reserved word has
80H added to ASCII code which will result
in garbage for that letter.)

The interpreter scans the text trying to
find one or more of these reserved words.
when one of these is found the reserved
word text is replaced by a single byte orp

ETI October 1984 — 135

‘token’ (80H to OFBH). The token is the
offset into the list where the reserved word
is located and is used as an index into
another table which contains the address of
the machine code for that command.

If the text cannot be resolved into
reserved words or text which belongs to the
reserved words, then a Syntax error mes-
sage is generated. The trick is to intercept
control of the interpreter just after the
reserved list has been scanned and add code
to re-scan the text to see if it contains the
new command Auto X.Y.

By good fortune (or good design),
immediately after scanning has been done
there is a call to RAM (to 79B2H). The Ret
(OC9H) at 79B2H is changed to a jump to
extra code which will re-scan the text buffer
for Auto and if found, will replace the text
with the relevant token.

Becausc only the reserved word list is dis-
abled (by deleting Auto from it), once the
Auto command text has been replaced by
the correct token (OB7H), the following
interpreter code will recognise the token
and accept it as legal.

Entering the program

The machine code program is entered via a
BASIC program (Listing 1) which POKEs
the code into RAM from Data statements.

The BASIC program locates the machine
code to high memory after resetting the
BASIC top-of-memory pointer to below
where the code will be POKEd. By this, the
machine code program is located out of the
way of any BASIC program to be entered
later. This action is independent of memory
size.

The machine code listing is shown for
reterence only. All that is necessary is to
enter the BASIC Program, save it on tape,
and from then on just run it before you start
entering your BASIC program. If all is well,
control will be returned to the Ready level
and, unless the machine code is overwritten
by POKEs or the VZ200 is reset, the Auto
command is now part of the immediate
command set.

Auto command syntax
The form of the Auto command is ‘AUTO
X,Y" where X is the starting line number
and Y is the increment beteen line numbers.
Entering AUTO X will give a starting
line number of X and a default increment of
10, while entering AUTO, Y will give a
default starting line number of 10 and an
increment of Y. AUTO by itself will give
both the line number and increment a
default of 10.
To exit the Auto mode,

hit ‘CTRL

BREAK'. Entering the Auto mode with
line numbers of statements already entered
can be a useful single step checking and
editing feature (see previous article).

Adding other commands
This method can be used for ‘unlocking’
other commands ‘hidden’ in the VZ200
BASIC ROM. As shown in the previous
article, the commands TRON and TROFF
are also accessible. In the time since that
article was submitted it has been found that
the code for a delete command (DEL X-Y),
with the same syntax as the LIST command,
is also present in the VZ200 BASIC ROM.
The listing for a BASIC program that
‘unlocks’ the ‘hidden’ code for the AUTO,
TRON, TROFF and DEL commands is
available from the author. It is of the same
form as the program described here.

What next?
The above four extra commands have
proved to be very useful and have resulted
in significant time-savings in writing
BASIC code. Other useful commands
| would be REN (line re-numbering),
| MERGE (merging small sub-programs on
tape into one program — difficult, because
| it appears that the VZ200 CLOAD always
| loads a BASIC program to the location in

Light elfects:

KI874 — 4 channel running light

K2588 — 3 channel sound to light with pre-amp
K2590 —— 7 channel light computer

K2601 — strobe light

K2602 -— 4 channel runming light and modulator

Audio:

K611 -- 7 watt amplifier
K1771 — FM oscillator

K1798 - stereo VU using LED's
K1804 60 watt amplifier

K257 2 — Jereo pre-amplifier
K2582 — stereo audio input selector
K2606 -- LED audio power meler

1 kk@;&t
fHeul

M&‘
~y

LiGHT COMPUTER

K2629 — CMOS real time clock and RAM
K2615 — motherboard for ZX81

K2616 — motherboard for ZX Spectrum
K2628 — motherboard for Commaodore 64

=

Telephone: (07) 277-4311

Prices do not include Sales Tax, packing & delivery charges.

‘IAE\\‘ Fred Hoe and Sons

246 Evans Road, Salisbury, Brisbane, Qld. 4107
Telex: AA 42319

Controllers:

VELLEMAN KITS

HIGH QUALITY KITS AND MODULES FOR AMATEUR AND PROFESSIONAL APPLICATIONS

$32 90 K2557 — 3 digil precision thermomeler $47 .60
$42 00 K2574 — 4 digit up/down counter $70.00
$65 10 K2577 — universal AC motor control $2520
$26 60 K2579 — start/slop limer $19.60
$3920 K2585 — code-lack (40 x 6 digil numbers} $110.00

K2594 — zero cross programmable timer $25.20
$18.20 K2623 — lab power supply 0-24V DC @ 3A $58 80
$18 20 K2565 — auto slide/cassetle coniroller $24.50
$30.25 K2567 — 20cm display, common anode $39.20
$40.60 K2584 — 4 digit precision timer $102.20
$21.00 K2591 — programmable control module $88 90
$32.90 K2625 — digital rev counter $47 60
$27 30 K2595 — precision timer module $77.00

AND NOW YOU CAN TURN YOUR
COMPUTER INTO A PRACTICAL
AND USEFUL INSTRUMENT WITH
THE VELLEMAN INTERFACE SYSTEM

FOR THE COMMODORE 64,

SINCLAIR ZX81 AND ZX SPECTRUM.
INTERFACE CARDS NOW AVAILABLE IN KIT FORM

STARTISTOP TIMER

$58 80 K2609 — DC outpul board $41.30
$53.20 K2610 — A/D converter, 8 bit precision $56.00
$54.20 K2611 — opto input board $44 80
$63 00 K2614 — Centronics intedace board $63 .00

K2618 — D/A converter, 8 bit precision $53 20

BANKCARD AND AMERICAN
EXPRESS WELCOME

bankcard
welcomehere

CATALOGUE DETAILING FULL RANGE AVAILABLE ON REQUEST

DISTRIBUTORS
WANTED

136 — ETI October 1984

memory from which it was CSAVEd), DH
and HD (allows decimal to hexa-decimal
conversion, and vice-versa). These would
be much more difficult to implement as
there is no code present in the VZ200
BASIC ROM, so they will have to be writ-
ten from scratch.

Cautions

Firstly, as this program uses code in the
Version 2.0 BASIC ROM, users with other
versions (if any) will have to check to see if
the program works with their version.

EXTENDING VZ BASIC

that during normal program cntry, occa-
sionally the cursor will skip a line after you
hit Return. This is of no real consequence
— until now. Unfortunately the auto line-
numbering code doesn’t like this and
responds by displaying the next line number
as it should, but then positions the cursor at
the beginning of the next line. Any BASIC
statements or text entered on that line will
be lost.

Each time Return is hit for a new line
number, check to sec that the cursor is on
the same line as the new line number. If it

Secondly, you may have already found

isn’t, hit Return again. This will skip to the

next line number. Do this until the cursor is
positioned on the same line as the new line
number, then it is OK to cnter statements.
Unless you are fussy the missed line num-
bers should not be a problem. Of course,
you can exit the auto mode (CTRL
BREAK) and restart so as not to miss a line
number.

A printed listing of a larger program to
add the AUTO plus TRON, TROFF. DEL
commands to the legal command set can be
obtained for $5.00 from the author at:

North Richmond NSW 2754,
Remember YOUR address! (pref. SAE) @

~ SKIP INC HL jAd)ust HL to next byte
8 Machine €
o NEXT LD A, (HL} iGet byte from text bufter
¥ AFSER AR S A ARSI R AR R R R AR R R A R R R R R OR A iIs 1t zerao 2
" T %% JR Z,ENDLIN-% iI1¢+ zero then end of line
H % BASIC AUTND LINE-NUMBERING UTIETY FOR THE VZ2020 %% ce 28H 3ils 1t a space ?
iR COPYRIGHT (C) 1984 BY STEVE OLNEY * JR 2,SKIP-% iYes ? Then skip to next byte
3 *y North Richmond 2754 *# LDI iNO ? Then transfer byte
5% * JR NEXT-% jforward and continue
H FAFHFE RIS KT R FHIHIT AT TEAE I I I TN TN i Line 1n text buffer must terminate with three :zero bytes
) 1 and register 'C’ must contain the new line length
H MACHINC C€ODC PROGRAM (POKE'd from the Basic program) v
H ENDLIN LD (DE) ,A iTerminate line with three
H Actual origin depends on the size of the memory 1n the INC DE jzero bytes.
i Vr2Ig used, LD (DE), A
i INC DE
START ORG [safcls Lo} LD (DE) , A
i LD A,C iNew text byte count-1, add &
H ave rejisters to be used cPL ito complemented negative no.
4 ADD A,06 jto adjust to line length+}
REGSAV PUSH AF LD (LINLEN) , A iand store 1t
FUZSH BC ;
PUSH DE b Restore registers
PUSH Mo i
R 13 RESREG POP %
5 PCP HL
i 1.5 tode scans the te<t buffer tor the TAUTO' command. [ald DE
' | POP BC iDo this just to empty stack
AUTOSC LD B,02 iNumber o©f b,tes tuo scan POoP AF
LD 10, ALTTXT jiPointer to "AUTO' text table LD BC, (LINLEN) ;Restaore BC with new line
SCAN1 Inic HL iAdiust to next byte 1n butfer LD B, 90H ilength on return to ROM
LD A, {IX+0G9 iGet t.rst byte of table RET
(e[(HL)Y iCompare with byte 1n buffer i
JR NZ EXIT-% 3 I¢# not equal then exit H Auto command not found so we return to ROM without
INC X iMove to rext byte in table 5 altering text or 'C' regaster.
DINZ “CANL-% jLoop back until 3 bytes done i
P EXIT POP Ix
H Executiorn 4rops Lhrough to here i1t all 3 bytes match. POP HL
i The 'AUTN' te t 15 replaced with 1ts token (@B7hex) and POP DE
H the resl cf tle te.t toperands 1 f any) 1s closed up behind POP BC
t the tchen. POP AF
i RET
FNDAUT PUSH HL iSave end ot "AUTO' 1n butfer H Text table 4or the 'AUTQO' command. Because the 70" 1in
DEC HL ;Mave back to beginning ot H "AUTO’ 15 a reserved word, 1t will have already been token-
DEC HL 3 TAUTO' text 11 bufter H 1sed. The token for "TO' 1s OBDH.
LD tHL) ,0E7H jReplace first byte with token »
LD BC,00030H sfor TAUTO" AUTTXT DEFB AT ;ASCII A"
FOP DE jEnd of TAUTO' text 1n butfer DEFB U 5ASCII "u”
EX DE, Hi_ iHL=end of '"AUTO’,DE=token DEFB @BDH ;i Token for "TO"
TNC DE ;Adyust DE to next byte | LINLEN DEFS 2
LISTING 1 26@ POKEST+I,D
9 REM F T RTINS 3 JE 9T T I I 265 CS=CsS+D:" UPDATE CHECKSUM TOTAL
19 ##* USE THE SHORT FORM -'*~ FOR THE REST OF THE "REM"S ## 278 NEXTI
28 - *% % 275 IFCS<>9861THENPRINT"- ERROR IN DATA ENTRY -":END:’ CHECKSUM
390 ' %% BASIC AUTO LINE-NUMBERING UTILITY FOR THE V2290 ## 2806 FORI=1TO3:READLB,0S:TS=TM+0S: "' BECAUSE PROGRAM IS RELDCATED
40 ' *% COPYRIGHT (C) 1984 BY STEVE OLNEY i 299 MT=INT(TS/256) :LT=TS-MT¥256:' ABSOLUTE LOCATIONS NEED TO
sg e NORTH RICHMOND 2754 % 300 POKEST+LB,LT:POKEST+LB+1,MT:" LOADED
66 *¥ *AUTOBAS" TAPE FILE W17-B 9/5/849 VERSION 1.2 it 316 NEXTI
78 ¥ E 23 365 ' ALTER "RET* AT 79B2 HEX TO JUMP TO START OF MACHINE CODE
80 * FRE RO HHOHHHHHHORHHHHOU HEOHOOEEE -t | 370 POKE31155,L1:POKE31156,M1:POKES1154,195
°a ' | 380 POKE3@862,249:POKE39863,8:° LOAD CALL TO "READY" ROUTINE
180 RB=100: TM= (PEEK (39897) +PEEK (39898) #256) -RB: 'GET TOP OF 390 X=USR(9):’ AND GO TO IT
110 MS=INT(TM/256) :LS=TM-MS#256: " MEMORY AND MOVE I 395 ' DECIMAL EQUIVALENT OF MACHINE CODE PROGRAM INSTRUCTIONS
120 POKE3@B97,L5:FOKE3@8968,MS: " DOWN 188 BYTES | 420 DATA245,197,213,229,221,229.6.3,221,33,79,6,35.221,126,8
208 CLEARS@: " RESET BASIC STACK PTR a1 DATA199,32,53.221,35,16,245.229,43.43,54,183,1,9,9,299.235
237 TM= (PEEK (388597) +PEEK (30896} %256): ' NEW TOP OF MEMORY 428 DATA1%,35,126,183,40,8,254,32,4€,247,237,168,24,244,18,19
235 MI=INT((TM¢1)/255):L1=TM+L-MI%¥256: " NEXT LOC'N ABOVE T.O0.M. 430 DATAL18,19,18,121,47,198,6,50,82,0,221,225,225,209,193
240 ST=TM:IFST 327&67THENST=5T-65536:" START OF M/C PROG.-! 440 DATA241,237,75,82,@,6,9,201,221,225,225,299,193,241,201
256 FORI=1TO82:" LOAD 82 BYTES OF MACHINE CODE INTO RESERVED 450 DATAG6S,85, 189
255 FPEADD: ’ AREA ABOVE BASIC TOP OF MEMORY 460 DATALl,B@,58,83,68,83

ETI October 1984 — 137

	Button1:
	Button2:
	Button3:
	Button4:

