
DICK MI

Personal
Colour Computer

Tim Hartnell
Neville Predebon

B-7206

4 •

4
1 I

Getting Started
with your

Dick Smith
VZ200

Personal Colour
Computer

Tim Hartnell
Neville Predebon

i1

GETTING STARTED

WITH YOUR

DICK SMITH VZ200

By

Tim Hartnell

and

Neville Predebon

iii

First published in Australia by:

Dick Smith Management Pty. Ltd.,
PO Box 2113,
North Ryde, NSW, 2113

Copyright (0 HartnelL and Predebon, 1983

First printing: September, 1983

ISBN 0 949772 21 6

Dick Smith Catalogue No. B 7206

The programs in this book have been included for
their instructional value. They have been tested
with care but are not guaranteed for any particular
purpose. Whilst every care has been taken the
publishers cannot be held responsible for any

running mistakes which may' occur.

ALL RIGHTS RESERVED

No use whatsoever may be made of the contents of
this volume — programs and/or text — except for

private study by the purchaser of this volume,

without the prior written permission of the
copyright holder.

Reproduction in any form or for any purpose is
forbidden.

Typesetting and artwork by Interface Publications,
Level 25, Nauru House, 80 Collins Street, Melbourne,

3000, Victoria, Australia

iv

Contents

Foreword.... • • • . • Ill••••••••••••••••••••1

Chapter One -Getting Started
The Keyboard3
Keywords.4
Functions............................6
Inverse9

Chapter Two - Putting Things on the Screen

Strings.............................13
Adding New Lines14
Making REMarks......................15

Chapter Three - Ringing the Changes
Clear that Screen...................21
Changing Program
Getting the program back..........25
Using a Printer-.26

Chapter Four - Descent into Chaos
Random Events27
Generating Random Numbers...........28
Fast Food Craziness30
Variables......•.•••••••••.••• •...31

Chapter Five - Round and Round We Go
FOR/NEXT Loops33
Stepping Down..........34
Making a Nest35
Multiplication Tables36
Cracking the Ccde...................38

Chapter Six - Changing in Mid -siream
GOTO•••••••.••••—•••••••••...•••••45
Restrictive Practices...........46
Subroutines................ ...48
Dice —rolling.. ..• • •• ..• • .• •..48

Chapter Seven - Getting into Music
..51
..52
..55
..55
..57

SOUNO................... .• •• • •. •••

Sound Advice.............. ••••••••
Bagpipes.................. ••••••••
Making Your Own Music—. ••••••••
Comparison Symbols........ •• • ••• e•

Chapter Eight - A Game and a Test
Out on the Fairway..............• ...59
Reaction Test.63

Chapter Nine - Stringing Along
The Character Set.......67
Testing Your Character.. SUMO.69
LEFT$, MID$, R1GHT$..... MM.70
Name Pyramid.....74
Echo Gulch..............75
INKEYS..........77

Chapter Ten - Reading DATA
READ, DATA and RESTORE... ..79
DATA Strings............. ..80

Chapter Eleven - Adding Life to Programs
NUMGESS
Subroutine ...86
Error Traps.........................87
SOUND._92

vi

Chapter Twelve - Getting Listed
DIM and Arrays.99
Multi—dimensional Arrays101
Escape from Murky Marsh103

Chapter Thirteen - Graphic Modes
The Modes... • • • • • • • • • • il • • • • •107
Hi—Res Demo..).....109

Appendix - Glossary of Computer Words
11.41011.0190011.41.111.1111.1114. II.. • • •• •• • • • 1 10

vii

viii

Foreword
If you've never programmed a computer before, and

you'd like to be able to program your computer in
just a few hours, then this book was written for
you.

You've probably realised how good it would be to
know at least a little about programming, so you can
impress your friends, instruct your kids, and create
your own utility and games programs. This book will
show you how to do this in just a matter of hours.

For a start, you'll learn just how few commands are
needed to work your new computer so it will be up
and running -- under your control -- in less than a
minute after you start reading the first page of
chapter one.

You'll find out the most important words for
programming, and -- once you've worked through the
book -- you'll have a library of interesting
programs to keep you, and your computer, occupied
for weeks to come.

Tim Hartnett,
Neville Predebon,
Melbourne, 1983

2

Chapter One -Getting Started
You've just bought a great computer, and in this
book we're going to show you how to get the most out
of it. Don't worry if this is the very first
computer you have ever owned. We're going to take
things slowly, and in small steps, so you'll have no
trouble in keeping up with us.

REAP THE BOOK WITH - YOUR COMPUTER ON

It is vital that you have the computer turned on at
all times when reading this book (or at least the
first time you work through it). This is an 'action
book' and, unlike a novel, is not designed simply to
be read. The book is like a book on how to drive.
You could never learn about changing gears, and how
it feels to handle an auto in traffic, without
actually going out and taking command of a vehicle.

So it is with your computer and this book. Try out
each new command and function when it is explained
to you, experiment with the games and other
programs, and you'll find you're learning to program
without even trying.

THE KEYBOARD

The first thing we have to do in learning to use the
computer is to able to use the keyboard. While not
quite the same as a typewriter keyboard, it is not
too far removed from it, and should present few
problems. The keyboard looks a little daunting when
first seen, but you'll discover that you will feel
quite confident about using it after only a few
hours.

3

We'll. be looking at the major features of the
keyboard step by step.

THE CONTROL KEY

The most important key on the computer is the
control key. It is located above the shift key, and
marked CTRL. This key gives you access to the
'keywords' and 'functions'(above and below each
key) and also controls the computer's editing
features.

Holding down the control key, and pressing
practically any other key, will give you the keyword
written above the key.

You'll see there is another control function above
the RETURN key. This allows you to access the
functions below each key. These go hand in hand with
the keywords to make up a program or program line.
Note that you can type out a word (such as PRINT) in
full if you like, Letter by letter, instead of
getting it in one press from a key.

When you press any key, without using the control
key, they you'll get the main character on that key,
the larger one in the lower left corner of each
square. On most of the brown squares you'll see a
letter; on others a number or punctuation mark.

KEYWORDS

Keywords are important parts of programs. They are
the sections of the program which actually tell the
computer what to do. The keywords are divided into
two groups, commands and functions. We'll look at
the commands first.

4

Many of the commands the computer obeys are like
ordinary English words. PRINT, for example, means
just what it says, and tells the computer to print
something on the TV screen. Program lines are
numbered, as you can see if you look at some of the
program Listings in this book, and the command GOTO
(followed by a number) tells the computer —
naturally enough -• to GO TO that line number.
You'll be pleased to discover you already know a
Large number of the words used in the programming
language BASIC which your computer speaks.

Other words are not so obvious, such as GOSUB and
DIM. Despite this, you'll have little trouble in
understanding what they mean when you get to them.

RUBOUT AND INSERT

These two keys — located towards the right of the
third row of keys — are part of the computer's
editing system. INSERT makes room in a program line
for a new character or keyword, and RUBOUT removes a
part of a program line which is no longer wanted.

INSERT works by placing a space between any two
characters in a line, so that you can later type in
new letters in that space. To use it, you just move
the cursor (that white rectangle you can see on the
screen) over the character which is where you want
to place your new material, and hit the INSERT key
over and over again until you have as many spaces as
you need.

To use the RUBOUT key, you must move the cursor to
the beginning of the character or keyword you want
to delete. Press CTRL and RUBOUT, and the line will
disappear leftward into the cursor.

SHIFTING

There is — as we're sure you noticed — more than
one character on most of the keys. The symbols in
the top right corner of each of the keys are
punctuation marks, and graphics and arithmetic
symbols. You get these characters by holding down
the SHIFT key and the relevant character key at the
same time. You get the graphics symbols (those funny
partially filled—in rectangles) in the same way.

FUNCTIONS

Functions are the second group of keywords (counting
the commands, which we looked at earlier, as the
first group). The functions are, for the most part,
written below the keys. Functions are the 'thinking
keywords', that is they often are called upon to
make decisions while a program is running.

Here's a simple example of a function in use:

10 PRINT RN0(100);: GOTO 10

If you typed this into your computer, pressed the
RETURN key afterwards, then entered the word RUN and
pressed the RETURN key again, you'd see numbers
between one and 100 all over the screen. Hit the
BREAK key when you want the random numbers to stop.

You get functions by pressing CTRL and holding it
down, press RETURN still keeping CTRL down, and then
press the relevant key. This sounds complicated, but
you'll find you soon get the hang of it.

To get the one line random number program above into

your computer (using keywords direct from the key—
board, rather than typing the words out in full),
you'd proceed as follows (and it is actually a lot
simpler than it looks):

— Type in 10 (the line number)
— Press CTRL and hit the P key to get PRINT
— Still holding down CTRL, press RETURN
— Still keeping CTRL down, press the F key, to

get RND(
— Let go of the CTRL key and type 100
— Press the SHIFT key and hit the 9 key to get

the closing bracket
— Let go of the SHIFT key and hit RETURN
— Type RUN and hit RETURN again

As we said, this may sound long—winded, but it
actually takes less than three seconds to do. (If
you've had some experience with other computers, you
may prefer to type out the words in full for a
white, then later on take advantage of the single
touch entry system.)

THE CURSOR

That flashing white rectangle which follows you as
you type on the screen is called the cursor, and it
has a number of uses.

Because it can move to any part of the screen, it's
very useful in editing as we discussed earlier. For
example, if you wanted to change the 100 in the line
given earlier into a 50, you would first move the
cursor to the beginning of the the number 100. You
do this with the versatile CTRL key, using the arrow
above the full stop key until the cursor is at the

7

beginning of Line 10. Then, still keeping CTRL down,
press the comma key until you are over the 1 in 100.

Keep it pressed. If you go past the 1, don't worry.
Just use the M key until you are over it again.
Still keeping the CTRL key down, press RUBOUT once.

The number should now be 00. Type in 5, which will
cover the first 0. Then let go of the CTRL key and
press RETURN over and over again until the cursor is
below the program Line, and you get the message:

?OUT OF DATA ERROR

Now type in RUN, and a number between one and 50
should appear on the screen.

THE GRAPHICS MOVES

We'll only touch on this subject briefly here and
will go into more detail in chapter thirteen. The
computer can operate in two graphics modes. The
first one (mode 0) is the standard display mode
you've been using to date. The second (mode 1) is a
graphics mode in which you can use colored dots
(called 'pixels' in computer jargon) to create
pictures.

To see this in action, enter and run the next
program:

5 REM - MODES -
10 MODEM: COLOR RND(6),1

15 X=0: Y=0
20 FOR N=0 TO 55: SET(X,Y)

25 X=X+1: Y=Y+1: NEXT N

30 6010 30

To get back to mode 0, press CTRL and BREAK.

INVERSE

The INVERSE command (located above the colon key) is
used to provide inverse video for information held
within quote marks. The. computer will not accept
keywords written in inverse. Try this:

10 PRINT "THIS IS'THE COMPUTER"

Put the computer into inverse after the first quote
mark by typing CTRL INVERSE (the rightmost key on
the second row from ' the bottom), then follow the
same procedure before the second quote mark to turn
the video back to normal.

Keep practicing on the computer until you're used to
the keyboard. You'll discover that the more you use
your computer, the more you'll learn about its
abilities and capabilities. Don't be afraid to
experiment. You can't damage the computer just by
typing in commands.

Now that you're familiar with the keyboard, it's
time to go to chapter two, and start learning to use
the computer itself.

9

10

Chapter Two - Putting Things on the Screen
We start learning to program using the most
commonly—used command in BASIC, the word PRINT.

Type the following on your computer:

PRINT 2 (Note that you can
either spell PRINT
out in full or use
the CTRL key)

Until you press the RETURN key, the computer will do
nothing. Specifically, at this point, it will ignore
the command PRINT 2. Press RETURN now, and you
should see the number 2 appear underneath the words
PRINT 2. This is the way PRINT works.It takes the
information which follows the command PRINT, with a
few exceptions which we'll learn about shortly, and
PRINTS this on the screen which is, after all,
exactly what you'd expect it to do.

But your computer is not completely stupid. That is,
it can do more than just blindly print what you tell
it to. If the word PRINT is followed by a sum, it
will work it out before printing, and give you the
result. Try it now. Enter the following line, then
press RETURN:

PRINT 5 + 3 (You get + by typing
shift ;)

You should see the figure 8 appear. The computer
added 5 and 3 together, as instructed by the plus
(+) sign, then printed the result on the screen. It
can do subtraction as well (clever inventions, these

11

computers). 	Type in this, and press RETURN to see
subtraction (and PRINT) at work:

PRINT 7 — 2

Now the computer can — of course — carry out a wide
range of mathematical tasks, many of them far more
sophisticated than simple addition and subtraction.
But there is a slight hitch. When it comes to multi—
plication, the computer does not use the X symbol
you probably used at school. Instead, it uses an
asterisk (*) and for division the computer uses a
slash (I).

DOING MORE THAN ONE THING AT ONCE

The computer is not Limited to a single operation in
a PRINT statement. You can combine as many as you
Like. 	Try the next one, which combines a multipli—
cation and a division. 	Type it in, then press
RETURN to see the computer evaluate it:

PRINT 5*3/2

This seems pretty simple. 	Just type in the word
PRINT, follow it with the information you want the
computer to print, and that's all there is to it.
But, it is not quite as simple as that! 	Try the
next one and see what happens:

PRINT TESTING

That doesn't look too good. Instead of the word
TESTING we've got a zero. The computer thought we
wanted a 'variable', rather than the word testing.
We won't try to explain the meaning of the word
variable at this point (it's not on the curriculum

12

for this chapter), but it means simply that the
computer thought you wanted to print a number which
had the name of TESTING. 	Foolish machine. 	Compu—
ters may be very, very clever machines, but they
need to be Led by the hand, Like a very stupid

chi ld, and told exactly what to do. 	Give them the
right instructions and they will carry them out
tirelessly and perfectly, without an error. But give
them incorrect instructions, or -- even worse
confuse them, and they give up in despair, or do
something quite alien to your intentions.

STRINGS

If you want the computer to print the word TESTING,
you must put quote, or speech, marks around the
words, like this:

PRINT "TESTING"

This time when you press the RETURN key, the word
TESTING will appear below the command statement.
This is worth remembering. When you want the
computer to print out some words, or a combination
of words, symbols, spaces and numbers, you need tc
put quote marks around the material you want to
print. 	Information held in this way between quote
marks is called a most peculiar name in computer
circles. The jargon for the information enclosed in
quote marks is 'string'. So, in our example above,
the word testing, when enclosed in quote marks, is a
string. (You can, in fact, get away with just the
first quote mark so the line reads PRINT "TESTING
but this is not good practice.)

13

OUR FIRST PROGRAM

Type the following into your computer. Notice that
each Line starts with a number. Type this into the
computer, and follow this with the other material.

10 PRINT "JACK AND JILL"

Now press RETURN. You have just entered the first
line of your first program.

Type in the next tine, the one starting with 20, and
press RETURN once you have it in place. Do the same
with the rest of the lines:

20 PRINT "WENT UP THE HILL"
30 PRINT "TO FETCH A PAIL"
40 PRINT "OF WATER"

When you run this you'll see the following (if all
is well:

JACK AND JILL
WENT UP THE HILL
TO FETCH A PAIL
OF WATER

ADDING NEW LINES

The computer, clever beast that it is, allows you to
enter your lines in any order you choose. It wilt
then sort them into order for you. Although our
first program, and most of the other ones in this
book, are numbered in 10's, starting at 10, there is
no particular reason why you should follow this
convention if you do not want to. However, there is

14

a reason for leaving 'gaps' in the counting. Al—
though our first program could easily be numbered in
l's, it would leave no room to add tater lines, if
we decided there was a need to do so.

To see the computer sorting Lines into order, adding
the following:

25 	REM A LINE IN THE MIDDLE

Now type in LIST, to get the computer to List out
the current program it is holding, and you'll see
Line 25 neatly in its proper numerical place. 	Now,
run the program again. You should find that line 25
made no difference at all to it.

MAKING REMARKS

Why did the computer decide to ignore line 25? 	The

word REM stands for remark, and is used within
programs when we want to include information for a
human being reading the program listing. 	You'll
find REM statements scattered throughout the prog—
rams in this book. 	In each and every case, the
computer ignores the REM statements. They are only
there for your convenience, for the convenience of
the programmer, or of someone else reading the
program.

Often you'll use REM statements at the beginning of
the program, like this one:

5 	REM JACK AND JILL POEM

You may wonder why this would be necessary. 	After
all, it is pretty obvious that the computer is

15

holding a 'Jack and Jill poem', even without the
Line 5 REM statement. 	You are right. In this case,
there is Little point in adding a title REM state—
ment to this program. But have a look at some of the
more complicated programs a little further on in
this book. Without REM statements you'd have a
pretty difficult time trying to work out what the
program was supposed to do.

REM statements are often scattered throughout prog—
rams. They serve to remind programmers what each
section of the program is supposed to do. 	Once
you've been programming a while, you'll be amazed at
how many programs you'll collect in listing form
which -- when you go back to them in a month or two
-- will seem totally obscure. You won't have a clue
how the program ,works, or even more important, what
on earth it is, or what it is supposed to do. This
is where you'LL-find REM statements invaluable.

It is worth getting into good habits early as a
programmer. 	So, I suggest you start right now add—
ing REM statements to programs. If you come across
programs, or program fragments, in this book which
you want to keep, and which do not have REM state—
ments, get into the habit of using them by adding
REM statements to these programs. 	And make sure you
use them in your original programs.

BACK TO PRINT

Let's return to the subject of the PRINT command.

Empty your computer's memory by entering NEW and
then pressing RETURN. 	Type the following program
into your computer and run it:

16

10 PRINT 1,2
15 PRINT
20 PRINT 1;2;3
25 PRINT
30 PRINT "COMPUTER"
35 PRINT
40 PRINT "23 + 34 = ";23 + 34
45 PRINT
50 PRINT 2*3
55 PRINT
60 PRINT 3"5
65 PRINT
70 PRINT "THE ANSWER IS ";23 + 5 — 7/6

Note that you can use the question mark (?) in place
of the word PRINT. It becomes PRINT when you LIST
the program. Now, let's look at the program we've
just run. There is a Lot we can learn from it.

Firstly, as in the JACK AND JILL program, the compu—
ter executes a program line by line, starting at the
lowest numbered one and proceeding through the line
numbers in order until it runs out of numbers, when
it stops. (You'll discnver that this orderly prog—
ression of line numbers does not always apply, as
there are ways of making the computer execute parts
of a program out of strict numerical order, but for
the time being it is best to assume that the program
will be executed in order.)

Look first to line 10 of your program. 	You can see

that there is a comma between the 1 and the 2. This
has the effect of making the computer print the
numbers with a wide space between them. The comma
can be used in this way to space out numbers neatly
for a table of results or a simi lar purpose. (Try

17

PRINT 1,,2 and see what effect this has.) When you

use a comma in this way, to divide the things which

follow a PRINT statement (but not when the comma is

inside a string, that is, between quote marks)

you'll find it divides the screen up into neat

little rows. 	Try PRINT 1,2,3 and see the result of

the commas. Then you can try the effect of PRINT

11,12,,f3,,,4,115,,f6fPf7PPIEIFY1911,6 to make it
perfectly clear what is going on.

The second line of the program, 15, is just the word

PRINT with nothing following it. 	This has the
effect, as you can see in the display on your

screen, of putting a blank line between those lines

which include material after the word PRINT. 	The
same comment, of course, applies to lines 25, 35,
45, 55 and 65.

Line 20 has three numbers (1, 2 and 3) separated not

by commas (as in line 10) but by semicolons (0.

Instead of separating the output of the numbers as

the comma did, you'll see that it causes them to be
printed with a single space on either side of them.
When printed, numbers are always followed by a
space. 	Positive numbers are also preceded by a
space. 	You use the semicolon when you want printed
material to follow other printed material without a
break.

Line 30 is a word, and this is a ... 	If you
mentally said 'string' when you came to those dots,

then you're learning well. This word is a string, in

computer terms, because it is enclosed within quote
marks.

Line 40 is rather interesting. For the first time we

18

have included numbers and a symbol (=) within a
string. As you can see the computer prints exactly
what is within the quote marks, but works out the
result of the calculation for the material outside
the quote marks, giving -- in this case -- the re—
sult of adding 23 to 34. Try to remember that the
computer considers everything within quote marks as
words, even if it is made up from numbers, symbols,
or even just spaces, or any combination of them,
white it counts everything that is not within quotes
in a PRINT statement as a number. 	This is why it

got so upset earlier when we told it to print the
word TESTING without putting the word in quote
marks. It looked for a number which was called
testing and because it could not find one (as we had
not told the computer to let testing equal some
numerical value), it refused to co—operate.

So line 40 treats the first part, within quote
marks, as a string, and the second part, outside

quote marks, as numerical information which it pro—
cessed.

In Line 50 we see the asterisk (*) used to represent

multiplication and the computer quite reasonably

works out what 2 times 3 is and prints the answer 6.
In Line 60 we come across a new, and strange sign,

T. This means 'raise to the power' so Line 60 means

print the result of 3 raised to the fifth power. In

ordinary arithmetic, we indicate this by putting the

5 up in the sir beside the three. However, it is
pretty difficult for a computer to print a number

halfway up the mast of another number, so we use the

symbol to remind us (by pointing upward) that it

really means 'print the second number up in the
air

19

The final line of this program combines a string

['THE ANSWER IS') with numerical information [23 	5

— 7/6). You can see that, as expected, the computer

works out the sum before printing the answer, and

prints the string exactly as it is. Look closely at

the end of the string. After the closing quote there

is a semicolon which, as we Learned in tine 20,

joins various elements of a PRINT statement

together. This semicolon means that the result of

the calculation is printed up next to the end of the

string.

This; brirus us to the end of the second chapter of

the book. 	T'm sure you'll be pleased at how much

you've learned so far and are looking forward to

continuing your LearOng. But now you've earned a

break. So take that break and then come back to the

book to tackle the third chapter.

20

Chapter Three - Ringing the Changes

It's all very welt getting things onto the compu—

ter's screen as we learnt to do in the Lest chapter,

but from time to time you'll discover we need to be
able to get printed materiel off the screen during a

program, to make way for more PRINT statements. We

do this with a command called CLS, for CLear the

Screen.

CLEAR THAT SCREEN

Enter the following program into your computer and

run it.

10 	PRINT "TESTING"

20 	INPUT A$

30 CLS

When you run the program, you'll see the word

'TESTING' appear under RUN, more or less as you'd

expect. 	However, below it you'll see a question
mark. Where did that come from? 	The question mark

is known as an input prompt. An input prompt, which

appears in a program when the computer comes to the

word INPUT, means the computer is waiting for you to

enter something else into the mact- ine, or just to

press RETURN. You'll recall that we spoke earlier

about strings, and about how they were anything

which was enclosed within quote marks. 	In line 20

above, the computer is waiting for a string input

(because the A which follows the word INPUT is, in

turn, followed by a dollar sign). You can either

enter a word, a number, any combination of words,

numbers and/or symbols in response to a string

input. 	(But you can only type in a number in

21

response to a numerical input. If you
the RETURN key when the computer wants a
computer wilt assume you want zero.]

Anyway, when you respond to the input
pressing RETURN, you'll see the screen
the word TESTING disappears. Where did

just press
number, the

prompt by
clears and
it go? We

pointed out that the computer works through a prog—
ram in line order. Firstly the program printed
TESTING on the screen with line 10 and then
progressed to line 20, where it waited for an input
(or for you to press RETURN). Once you've done this
in line 20, the computer moved along to line 30
where it found CLS and obeyed that instruction. The
instruction was clear the screen, so the computer
did just that and the screen cleared.

Run the program a few times, until you've got a
pretty good idea of what is happening, and you've
followed through -- in your mind -- the sequence of
steps the computer is executing.

DOING IT AUTOMATICALLY

Instead of waiting for you to press the RETURN key,
you can write a program which clears the screen
automatically, as our next example demonstrates.
Enter this next program into your computer, type in
RUN and then RETURN, and then sit back for the
Amazing Flashing Word demonstration. Note that you
should have a space on either side of words like
FOR and TO.

5 REM - FORTO -
7 CLS
10 PRINTi234,'AUTOTESTINP
15 FOR D=0 TO 599
20 NEXT D

22

25 CLS

30 FOR 0=0 TO 599

35NEXT 0
40 6010 10

Run this program, and you'll see the word

AUTOTESTING alternatively flashing off and on in the
middle of the screen. 	What is happening here?
Let's took at the program and go through it line by

line. Firstly, as you know, line IC prints the word

AUTOTESTING. Next, the computer comes to tine 20,
where it meets the word FOR. 	We'll be learning
about FOR/NEXT loops (as they are called) in detail

in a later chapter, but all you need to know here is
that the computer uses FOR/NEXT loops for counting.

In this program, lines 15 and 20 (the FOR is in line

15, the NEXT in line 20) tell the computer to count
from zero to 599 before moving on. As you can see,
it does this counting pretty quickly.

So, it waits for a moment while counting from zero
to 599. Then it comes to tine 25, which is the

command CLS, which tells the computer to clear the
screen. The computer then encounters, in lines 30

and 35, another FOR/NEXT loop, so waits a while as

it counts from zero to 599 again. Continuing on in

sequence, it comes to 40 where it finds the
instruction GOTO 10. This, as is immediately

obvious, tells the computer to go to line number 10.

When the computer gets to line 40, it obeys the GOTO

instruction, and starts over from line 10, going

through the autotesting printing, counting to 599,

clearing the screen, counting to 599 again, and then

coming to GOTO 10 so that it starts all over again.

23

CHANGING PROGRAM LINES EASILY

It ib relatively easy to change lines within a typed

program. All you have to do is use the M and CTRL
keys to the right of the fourth Line on the

keyboard, to move the cursor to the required

position, then type in the desired changes.

If you had a line 10 which read...

10 REM AN EDIT TEST

...and you wanted it to read...

10 REM AN EXCITING EDIT TEST

...all you would need to do would be to
move the cursor to the line, then use the INSERT key

to make space for the word EXCITING (nine spaces)

before typing it in.

After doing this, you just press the RETURN key

again, and type in LIST (or use CTRL 5) and press

RETURN again. This time, when the program is listed,

you'll see the new version of line 10 is included

within the program.

If you have only a single letter wrong within a
line, you simply move the cursor to the error and

then type in the correct letter or letters. These
will automatically replace the incorrect material.
If you want to wipe out en entire line, just enter

the line number, and press RETURN.

Now, these instructions may seem a little complex.

However, they do not need to be mastered before you

24

can continue your Learning. If you're not sure how a
particular line should be edited, and you can't be

bothered looking it up in here or in your manual,

just type the whole Line again. When you press

RETURN, the new line will automatically take the
place of the old one within the listing.

GETTING THE PROGRAM BACK

If you want to see a complete listing after it has

vanished once a program has been run, all you need

to do (as we mentioned briefly befcre] is type in
the word LIST then press the RETURN key.

There is no reason, when using LIST, why you must

list from the top of the program. 	When you have

Longer programs, you may well want to List only part

of them. You do this by use of the hyphen (-3, as
follows:

LIST — 100
	

This Lists up to,
and including

Line 100

LIST 50 — 90 	This Lists Lines
50 to 90

LIST 150 — 	This Lists the

program from Line
150 to the end

LIST 270 	This lists just

line 270

25

USING THE PRINTER

Full instructions on printer use come, of course,
with the printer, but if you prefer not to bother
with them at the moment, and you just want your
printer to work, these are the commands you'll need:

LLIST — to list the current
program

COPY — to dump the full contents of the
screen

LPRINT — this is used within a program when
you want to print something on the
printer, rather than on the screen

LLIST is easy to remember, as it is very similar to
LIST and has a similar function, except that it
lists to the printer rather than listing to the
screen. In the same LPRINT is easy to remember, as
it does more or less what PRINT does, except on the
paper rather than the screen. Note that LLIST can be
used in the same way as LIST to get just parts of a
listing (so LLIST 40 — 70 is valid).

26

Chapter Four - Descent into Chaos
It's time now to start developing some real prog—
rams. You'll notice that from this point on in the
book there are some rather lengthy programs. Many
of them will contain words from the BASIC
programming language which have not been explained.
This is because, as programs become more complex
(and far more satisfying to run) it becomes more and
more difficult to keep words which have not been
explained out of the programs. However, this is not
a major problem, and you'll probably be able to work
out what many of them mean, just from seeing them in

the context of a program line.

We are working methodically through the commands
available on the computer, and in due course, all of
the important ones will be covered. When you come
across a word in a program which seems unfamilair,
just type it in. You'll find that you'll soon start
picking up the meaning of words which have not been
explained, just by seeing how they are used within
the program. So if you find a new word, don't
worry. The program will work perfectly without you
knowing what the word is, and investigating the
Listing after you've seen the program running is
likely to Lead you to work out what it means.

RANVOM EVENTS

In the world of nature, as opposed to the manufac—
tured world of man, randomness appears to be at the
heart of many events. The number of birds visible in
the sky at any one time, the fact that it rained
yesterday and may rain again today, the number of
trees growing on one side of a particular mountain,
all appear to be somewhat random. Of course, we can

27

predict with some degree of certainty whether or not
it will rain, but the success of our predictions
appears to be somewhat random as well.

When you toss a coin in the air, whether it lands
head or tails depends on chance. The same holds true
when you throw a six—sided die down onto a table.
Whether it lands with the one, the three or the six
showing depends on random factors.

Your computer's ability to generate random numbers
is very useful in order to get the computer to
imitate the random events of the real world. The
BASIC word RND lies at the heart of using this means
of generating random numbers.

GENERATING RANDOM NUMBERS

We'll start by using RND just as it is to create
some random numbers. Enter the following program,
and run it for a while:

5 REM - RND -
10 PRINT RND(0);
15 GOTO 10

When you do, you'll see a list of numbers like these
appear on the screen:

0198217 .900392 .943668 .5964
19 .116922 .626239 .705592 .
323249 .791395 .561799 .51580
5 .0985055 .610808 .690898 .
785137 .087168 .184719 .73075

As 	you can see, RND [0) generates numbers randomly

between zero and one. If you leave it running, it

28

will go on and on apparently forever, writing up new
random numbers on the screen.

Now random numbers between zero and one are of
limited interest if we want to generate the numbers
and get them to stand for something else. For
example, if we could generate l's and 2's randomly,
we could call the l's heads and the 2's tails and
use the computer as a kind of 'electronic coin'. If
we could get it to produce whole numbers between one
and six, we could use the computer as an imitation
six—sided die.

Fortunately, there is a way to do this. Enter the
next program and run it:

5 REM - RND2
10 PRINT RND(6);

15 GOTO 10

When you run this program, you'll get a series of
numbers, chosen at random between 1 and 6, like
these:

4 5 3 5 6 2 4 4 6 1

2 6 3 4 4 6 6 6 3 2 6

5 3 5 2 4 2 5 2 5 4 6

6 4 6 6 6 4 5 3 3 2

6 1 3 2 1 1 1 2 5 2 2
1 3 5 1 1 3 1 6 3 6 2
5 1 5 3 6 3 5 3 2 3

6 1 5 6 1 6 5 6 2 3 3

Even though we could create vast series of numbers
between 1 and 6 with a program like this, it is not
particularly interesting. And, if you ran the prog—
ram over and over again, you'd find that the

29

sequence of numbers was starting to look very
familiar. The random numbers, as you'd discover if
you ran the program a number of times, are not
really random at all.

This is because the computer does not really gene—
rate random numbers, but only looks as if it is
doing so. Inside its electronic head, your computer
holds a long, tong list of numbers, which it prints
in order when asked for random numbers. The list is
so long, that it is impossible to see a pattern in
it, once it is running.

FAST FOOD CRAZINESS

We'll look now at a program which makes an
interesting use of the computer's ability to
generate random numbers. As you can see, it creates
a scene where you have turned up at a fast food
outlet, desperate for something to eat, and you've
decided to let the random number generator pick your
food for you:

5 REM - FASTFOOD

10 CLS
15 A=RND(4)
20 PRINT "YOU'VE ORDERED D;
25 IF A=I THEN PRINT 'A HAMBURGER WITH THE LOT"
30 IF A=2 THEN PRINT "A LARGE SERVE OF FRIES"
35 IF A=3 THEN PRINT "A SERVE OF RIBS"
40 IF A=4 THEN PRINT "TWO HOT DOSS WITHTOMATO SAUCE"
45 FOR D=0 TO 599: NEXT D
50 PRINT
55 GOTO 15

30

When you run this, you'll get something like this
list of food on the screen:

YOU'VE ORDERED A HAMBURGER WITH THE LOT

YOU'VE ORDERED A SERVE OF RIBS

YOU'VE ORDERED A LARGE SERVE OF FRIES

YOU'VE ORDERED A HAMBURGER WITH THE LOT

YOU'VE ORDERED TWO HOT DOGS WITH
TOMATO SAUCE

When you look back at the listing, you'll see how
the program sets the letter A to the value of the
random number in line 15. In this case, the letter
A is standing for a number. It is called a
variable, or (because in this case it stands for a
number), it is called a numeric variable. In
computer jargon, we say that, in line 30, the
computer has assigned the value of the random number
to the variable A.

And, as you can see in lines 25,30,35 and 40, the
value assigned to A determines which food order you
place: Read this over again if it seems incom—
prehensible the first time.

31

32

Chapter Five -Round and Round We Go

In this chapter, we'll be introducing a very useful
part of your programming vocabulary — FOR/NEXT
loops. You'll recall that we mentioned FOR/NEXT
loops when demonstrating the use of CLS to clear the
screen. A FOR/NEXT loop was also used in our FAST
FOOD program (line 45) to add a delay.

A FOR/NEXT loop is pretty simple. It takes the form
of two lines in the program, the first of which is
Like this:

10 FOR A = 1 TO 20

With the second like this:

20 NEXT A

The control variable, the letter after FOR and
NEXT, must be the same. (You can, in fact, leave the
second A out altogether, as the computer will know
what you mean. However, leaving the control variable
out makes programs harder to read and alter, so this
practice is not recommended in your early
programming days.)

As a FOR/NEXT loop runs, the computer counts from
the first number up to the second, as these two
examples will show:

10 FOR A = 1 TO 20
20 PRINT A;
30 NEXT A

When you run it, you'll see the numbers one to 20
appear on the screen, much as you may have expected.

33

Now try this version:

10 FOR A = 765 TO 781
20 PRINT A;
30 NEXT A

This is the result of running it:

765 766 767 768 769 770 7
71 772 773 774 775 776 777

778 779 780 781

STEPPING OUT

In the two previous examples, the computer has
counted up in ones, but there is no reason why
it should always count in this way. The word STEP
can be used after the FOR part of the first line as
fo l lows:

10 FOR A = 10 TO 100 STEP 10
20 PRINT A;
30 NEXT A

When you run this program, you'll discover it counts
(probably as you expected) in steps of 10, producing
this result:

10 20 30 40 50 60 70 80
90 100

STEPPING DOWN

The STEP does not have to be positive. Your computer
is just as happy counting backwards, using a
negative STEP size:

34

10 FOR A = 100 TO 10 STEP —10
20 PRINT A,
30 NEXT A

This is what the program output looks Like:

100 9 0 8 0 7 	60 50 40 :7.0
20 10

MAKING A NEST

It is possible to place one or more FOR/NEXT loops
within each other. This is called nesting loops. In
the next example, the B loop is nested within the A
loop:

10 FOR A = 1 TO 3
20 FOR B = 1 TO 2
30 	PRINT A;"TIMES";B;"IS",A*B
40 NEXT B
50 NEXT A

The nested program produces this result:

I TIMES- 1 IS 1
I 'TIMES 2 IS 2
2 TIMES I IS 2
2 TIMES 2 IS 4
3 TIMES I IS 3

'T I MES 2 I S 6

You need to be very careful to ensure that the first
loop started is the last loop which is finished.
That is, if FOR A...was the first loop you mentioned
in the program, the last NEXT must be NEXT A.

35

Try swapping line 10 with line 20 in the program,
and see what happens when you get your FORs and
NEXTs mixed up.

You may recall I mentioned that you do not, in fact,
have to mention the control variable with the NEXT

if you do not want to. I also said that it was not
good programming practice to leave it out as it made
programs somewhat difficult to unravel. However, as
I imagine you've realised by now, leaving off the
control variables at least gets around the problem
of wrongly specifying the NEXT in nested loops.

You can replace lines 40 and 50 of the program with
either of the following (removing the old line 50
completely):

40 NEXT A:NEXT B
or

40 NEXT :NEXT
or

40 NEXT A,B

MULTIPLICATION TABLES

You can use nested loops to get the computer to
print out the multiplication tables, from one times
one right up to twelve times twelve, like this:

10 FOR A=I TO 12
15 FOR B=1 TO 12
20 PRINT A;HTIMES";B;HIS";A*B
25 NEXT E: NEXT A

36

Here's pert of the output:

1 TIMES 1 IS 1
1 TIMES 2 IS 2
1 TIMES 3 IS 3
1 TIMES 4 IS 4
1 TIMES 5 IS 5
1 TIMES 6 IS 6
1 TIMES 7 IS 7
1 TIMES 8 IS 8
1 TIMES 9 IS 9
1 TIMES 10 IS 10
1 TIMES 11 IS 11

There is no reason why both Loops ahouid be
tnmneLLing in the oemm direction [that is, why both
shouLd be counting upwards) as this program
demonstrates:

10 FOR A=1 TO 12
15 FOR B=12 TO 1 STEP —1
20 PRINT AV"TIMES"oBy"IS";A*B
25 NEXT Bx NEXT A

Here's part of the output of that program:

1 TIMES 1 IS 1
2 TIMES 12 IS 24
2 TIMES 11 IS 22
2 TIMES 10 IS 20
2 TIMES 9 IS 18
~ TIMES 8 IS 16
2 TIMES 7 IS 14

37

CRACKING THE COVE

It's time now for our first real program. In this
game which uses several FOR/NEXT Loops, CODEBREAKER,
the computer thinks of a four—digit number (Like
5462) and you have eight guesses in which to work

out what the code is. In CODEBREAKER, based on a
program by Adam Bennett and Tim Summers, you not
only have to work out the four numbers the computer
has chosen, but also determine the order they are
in.

After each guess, the computer will tell you how
near you are to the final soLution. A 'white' is the
right digit in the wrong position and a 'black' is a
correct digit in the right position within the four
digits of the code. As you can see from this, you
are aiming to get four blacks. Digits may be
repated within the four—number code.

Enter the program and play a few rounds against the
computer. Then, return to the book for a discussion
on it, which will highlight the role played by the
FOR/NEXT loops.

5 REM — CODEBREAKER
10 CLS
15 PRINT@64, "********************************"
'70 PRINT "WHEN YOU ARE TOLD TO DO SO,","ENTER

A 4—DIGIT NUMBER";
PRINT " AND THEN HIT 'RETURN'."

7:0 PRINT: PRINT "DIGITS CAN BE REPEATED."
PRINT: PRINT "YOU WILL HAVE 8 CHANCES TO

CRACKTHE CODE."
40 PRINT: PRINT "********************************"
45 FOR D=0 TO 4999: NEXT D: CLS
50 DIM B(4): DIM D(4)

38

55 H=0
60 FOR A=1 TO 4
65 B(A)=RND(9)
70 NEXT A
75 FOR R=1 TO 8
80 PRINT: PRINT "THIS IS ROUND NUMBER";R
85 PRINT: INPUT "WHAT IS YOUR GUESS";G
90 IF G<1000 OR G>9999 THEN 85
95 P=INT(G/1000)
100 Q=INT((8-1000*P)/100)
105 T=INT((G-1000*P-100*Q>/10)
110 S=INT(G-1000*P-100*Q-10*T)
115 D(1)=P: D(2)=Q: D(3)=T: D(4)=S
120 FOR E=1 TO 4
125 IF D(E)<>B(E) THEN 150
130 PRINT " BLACK";
135 B(E)=B(E)+10
140 D(E)=D(E)+20
145 H=H+1
150 NEXT E
155 IF H=4 THEN 255
160 FOR F=1 TO 4
165 D=D(F)
170 FOR X=1 TO 4
175 IF D<>B(X> THEN 195
180 PRINT " WHITE";
185 B(X)=B(X)+10
190 GOTO 200
195 NEXT X
200 NEXT F
205 FOR X=1 TO 4
210 IF B(X)<10 THEN 220
215 B(X)=B(X)-10
220 NEXT X
225 H=0
230 FOR D=0 TO 1999: NEXT D: CLS
235 NEXT R

39

240 PRINT: PRINT "YOU DIDN'T CRACK IT.
245 PRINTx PRINT "THE CODE WAS ";B(1);B(2);

B(3);B(4)
250 GOTO 265
255 PRINT@128, "WELL DONE, CODE BREAKER!"
260 PRINT: PRINT "YOU CRACKED IT IN ONLY";R;

"ROUNDS~"
265 PRINT: PRINT: INPUT "WOULD YOU LIKE

ANOTHER GAME";A$
270 IF A$="YES" THEN RUN 50
275 PRINT "VERY WELL."
280 END

Here's what the anromn Looks Like at the beginning
of the run:

WHEN YOU ARE TOLD TO DO SO,
ENTER .A 4—DIGIT NUMBER AND THEN
HIT 'RETURN'.

DIGITS CAN BE REPEATED.

YOU WILL HAVE 8 CHANCES TO CRACK
THE CODE.

And here 1's port of one round pLeysd sQe1not it:

WHAT IS YOUR GUESS? 1212
BLACK BLACK

WHAT IS YOUR GUESS? 1234
WHITE BLACK

40

WHAT IS YOUR GUESS? 5462
WHITE BLACK BLACK

We'll now go through the program, line by line, a
practice 	we'll be following in several of the
programs in this book. If you don't want to read the
detailed explanation now (and there may well be
parts of it which are a bit difficult to understand
at your present stage), by all means skip over the
explanation and then come back to it later when you
know a little more.

Lines 15 and 40 print a number of asterisks to rule
off the title and instructions. Line 45 pauses for a
few seconds so that you can read the instructions,
before the screen is cleared. Arrays are dimensioned
in Line 50. We discuss arrays in a later chapter.
For now, all you need to know is that by saying DIM
B(4) you tell the computer you want to create a list
of objects, with the list called B, in which the
first item can be referred to as B(1), the second as
B(2) and so on. You do not really need to dimension
an array when less than 11 elements will be needed,
but it helps to keep your thinking clear to always
dimension arrays before using them in programs. In
this program the arrays are used for storing the
numbers picked by the computer, and for storing the
digits which you pick each time you try to break the
code.

H is a numeric variable (we've mentioned numeric
variables before, you'll recall) which is set equal
to zero in Line 55. In line 145, one is added to
the value of H each time a black is found, so that
if H ever gets to equal four, the computer knows all
the digits have been guessed, and goes to the
routine from line 255 to print up the
congratulations.

41

The Lines from 60 to 70 work out the number which
you wilt have to try and guess. Line 55 uses the
RND function we've discussed before to get four
random numbers between zero and nine, and stores one
each in the elements of the B array. Note that the
first FOR/NEXT loop of our program appears here. The
A in line 60 equals one the first time the loop is
passed through, two the second time, and so on, so
that the A in line 65 changes as well.

Our next FOR/NEXT loop, which uses R, starts in the
next line. It counts from one to eight, to give you
eight guesses. Line 85 accepts your guess, after
the previous line has told you which guess it is you
are entering. The numeric variable G is set equal
to your guess, and line 90 checks to make sure you
have not entered a five—digit number or one which
has less than four digits. If you have, the
program goes back to line 85 to ask you once again
to enter a guess.

The next section of the program, right through to
Line 225, works out how well you've done, using a
number of FOR/NEXT loops (120 to 150, 160 to 200,
170 to 195 and 205 to 220). Line 235 sends the
program back to the line after the FOR R =... to go
through the loop again. If the R loop has been run
through eight times, then the program does not go
back to line 75, but 'falls through' line 235 to 240
to tell you that you have not guessed the code in
time, and to tell you what it is. Line 245 prints
out the code.

If you do manage to guess it, so that H equals four
in line 155, then the program jumps to line 255 to
print out the congratulatory message.

42

Lines 265 to 280 provide the finishing touch. Line
265 asks you if you would like to play again. If you
do, then the computer RUNs Line 50. Note that this
is different from GOing TO line 50. By telling the
computer to RUN, we are telling it to clear out all
the old values assigned to variables, so they don't
effect the next game. 	The variables would not be
wiped out if the line read GOTO 50.

Even if you don't crack the code the first time you
play, you still get the chance to play again (see
line 250). By going back to line 50, you're saved
having to read through the instructions again.

43

44

Chapter Six = Changing in Mid-stream
We pointed out at the beginning of the book that, in
most situations, your computer foL[omm through a
program in i1ns order, starting at the Lowest Line
number and fbLimwinQ through in order unt1i the
program reaches the finai Lina.

This is not aLwoyo true. The GOTO command sends
action through o program in any order which you
determine. Enter the foiLowdng program, and before
you run it, see if you can predict what the reeuit
of running it wiLi be:

5 REM — GOTO --
I GOTO 25
15 PRINT "THIS IS 15"
20 GOTO 35
25 PRINT "THIS IS 25"
30 GOTO 15
35 PRINT "THIS IS 35"
40 FOR Z=1 TO 200x NEXT Z
45 GOTO 25

This rather pointLoeo program sends the poor
computer jumping aLi over the piece, changing its
position in the program every time it comes to o
GOTO command. Horo`o whet you ohouid have oaon on
your screen:

THIS IS 25
THIS IS 15
THIS IS 35
THIS IS 25
THIS IS 15
THIS IS 35
THIS IS 25
THIS IS 15
THIS IS 35

45

The program starts at line 10, and finding GOTO 25
there, moves onto line 25 to print the message "THIS
IS 25". It then continues on to line 30 where it
finds the instruction GOTO 15. Without question, it
zips back to line 15 to print out "THIS IS 15" then
goes to line 20 which directs it to line 35. At line
35 it finds the instruction to print out "THIS IS
35" which it obeys. The computer then follows
through to line 40 where the Z loop inserts a short
pause, before the computer moves on to line 45 to
find yet another GOTO instruction, this time to line
25, which is just about where we began...and the
whole thing starts over again.

RESTRICTIVE PRACTICES

Using GOTO in this way is called unconditional
branching. The command is not qualified in any way,
so the computer always obeys it. This brings us
neatly to the next computer words we will consider.
These are a pair of words IF and THEN, nearly always
found (or implied) together, which impose conditions
on branching by GOTO commands. This pair of words
is easy to understand. IF something is true, THEN do
something else. IF you are hungry, THEN order a
hamburger. IF you want a big car, THEN save for it.
IF something THEN something.

The next program, which 'rolls a die' (using the
random number generator) and then prints up the
result of that die roll as a word, uses a number of
IF/THEN lines:

5 REM — DIE ROLL
10 GOTO 70
15 PRINT "ONE"
20 GOTO 70

46

25 PRINT "TWO"
30 GOTO 70
35 PRINT "THREE"
40 GOTO 70
45 PRINT "FOUR"
50 GOTO 70
55 PRINT "FIVE"
60 GOTO 70
65 PRINT "GIX"
70 A=RND(6)
75 FOR Z=1 TO 200: NEXT Z
80 IF A=1 THEN 15
85 IF A=2 THEN 25
90 IF A=3 THEN 35
95 IF A=4 THEN 45
100 IF A=5 THEN 55
105 IF A=6 THEN 65
110 IF A=4 THEN 45
115 IF A=5 THEN 55
120 IF A=6 THEN 65

This 10 what you ̀ Li see when you run the program:
SIX
ONE
ONE
FOUR
FIVE
TWO
TWO
FOUR
FOUR
SIX
SIX

So, we've Looked at non—zonditioneL and conditioneL
GOTOva to send action sLL over the pLsce within s
program,

47

SUBROUTINES, ANOTHER WAY TO FLY

There is another way to redirect the computer during
the course of a program. This is by the use of
subroutines. A subroutine is part of a program which
is run twice or more during a program, and is more
efficiently kept outside the main program than
within it.

The next program should make it clear. In this, the
computer throws a die over and over again. The first
time it is thrown, the computer is throwing it for
you. 	The second time it throws the die for itself.

After each pair of dice has been thrown, it will
announce who is the winner (highest number wins).
The program uses a subroutine to throw the die, so
we do not need two identical 'die—throwing routines'
within a single program. Enter and run the program,
then return to the book, and I'll explain where the
subroutine is within the program, and how it works:

5 REM — DIE BUD —
10 GOSUB 90
15 PRINT: PRINT
20 FOR R=1 TO 2
25 GOSUB 70
30 IF R=1 THEN A=D
35 IF R=2 THEN B=D
40 NEXT R
42 PRINT TAB(4);
45 IF A>1.3 THEN PRINT "I WIN"
50 IF A<B THEN PRINT "YOU WIN"
55 IF A=D THEN PRINT "IT'S A DRAW"
60 SOUND 25,1
65 RUN
70 REM DIE ROLL SUBROUTINE
75 D=RND(6)

48

77 PRINT TAB(4);
80 IF R=1 THEN PRINT "I ROLLED A";D
85 IF R=2 THEN PRINT "YOU ROLLED A";D
90 REM DELAY MINI—SUBROUTINE
95 FOR P=0 TO 399: NEXT P
100 RETURN

This is what you'll see when you run it:

I ROLLED A I
YOU ROLLED A 1
IT'S A DRAW

I ROLLED A 6
YOU ROLLED A 3
I WIN

ROLLED A 6
YOU ROLLED A 2

The program pauses for a short while on line 95,
prints two blank lines, then enters the R FOR/NEXT
loop. When it gets to line 25 which it does (of
course) once each time through the R loop, the
program is sent to the subroutine starting at line
70. The 'die is rolled' in line 75, and the numeric
variable D is set equal to the result of the roll.
The next two lines print out the result of the roll,
using an IF/THEN to determine whether the computer
should print "I ROLLED A ..." or "YOU ROLLED A ...".
There is a slight pause (line 95) and then the
computer comes to the word RETURN. 	The word RETURN
signals to the computer that it must return to the
line after the one which sent it to the subroutine.

49

In this program, that line (the one which is after
the one which sent it to the subroutine) is 30.

There, the IF/THENs in lines 30 and 35 determine
whether the value of the roll (0) should be assigned
to the variable A or to B.

Line 40 ends the FOR/NEXT loop, and then lines 45 to
55 determine whether the computer has won (which it
will have done if A is greater than B, a condition
which is tested using the > sign in line 45) or
whether the human has won (which will happen if A is
less than B, a condition tested in line 50 by the

'less than' symbol, <). From here the program goes
back to line 10 where it starts again. (By the way,
you get the computer to stop running an 'endless'
program of this type by holding down the CTRL key
and then pressing BREAK until the program halts.)

Study this program, until you're pretty sure you
know how subroutines work.

50

Chapter Seven - Getting into Music
The SOUND command is a great way to add life to your
programs. It is amazing, as you'll soon discover,
what a little sound can do to enhance a program.

SOUND is always followed by two numbers (or by
variables representing numbers). The first number is
the pitch, or frequency, of the note to be played,
and the second determines for how long the note will
sound. The pitch is between 0 and 31, and the

duration is between 1 and 9. The pitch value of 0
produces no sound, it is a 'rest' in music terms.

Here's a simple program which puts the SOUND
statement through a few of its paces:

REM — SOUND —
10 FOR S=0 TO 31 STEP 2
15 SOUND 8,1
20 NEXT S

And you can combine more than one SOUND statement at
a time within a loop for an even more effective
result:

5 REM — SOUND2
10 FOR 8=0 TO 31 STEP 2
15 N=31-8
20 SOUND 8,1: SOUND N,1
25 NEXT S

51

SOUND ADVICE

The control numbers for the SOUND command can be
the result of calculations, instead of being
integers or assigned variables. In the next
program, SOUND ADVICE, you have to guess the number
between one and fifty which the computer has thought
of. The feedback on each guess -- which wilt help
you home in on the correct number in the shortest
number of guesses -- is in the form of output
produced by SOUND. The lower the note, the closer
you are to the correct answer. Once you've played
the game a few times, you'll see how easily you can
interpret the output.

Here's what you see on the screen when playing the
game:

THIS IS ROUND NUMBER 20

WHAT NUMBER AM I THINKING OF? 31

YES! I WAS THINKING OF 31

YOU GOT THE NUMBER IN ONLY 20
TRIES.

WOULD YOU LIKE TO TRY AGAIN? NO

VERY WELL, THEN.

52

Here is the Listing (and note that ABS in line 50
stands for 'absolute' and gives the result of the
calculation, stripped of its sign; if the result of
a calculation is positive, ABS of that is still

positive, while the ABS of a negative number is the
number without its negative sign, so ABS (-3) is
3)• s

 REM — SOUND ADVICE —
10 CLS
15 N=RND(50)
7() R=1
25 PRINT: PRINT "THIS IS ROUND NUMBER";R
:30 PRINT: INPUT "WHAT NUMBER AM I THINKING OF";I
35 IF I<1 OR I. 	THEN 30
40 IF I=N THEN 60
45 PRINT "NO,";WIS NOT RIGHT.
50 S=ABS(N—I): SOUND 8,1
55 R=R+1: FOR D=O TO 199: NEXT: GOTO 25
60 PRINT: PRINT "YES! I WAS THINKING OF";t4
65 SOUND 31,1
70 PRINT: PRINT "YOU GOT THE NUMBER IN

ONLY";R,"TRIES."
75 PRINT: INPUT "WOULD YOU LIKE TO TRY AGAIN";A$
80 IF A$="YES" THEN RUN
85 PRINT: PRINT "VERY WELL, THEN.": END

The first line of the program is, of course, just a
REM statement to tell you the name of the program.
Line 10 clears the screen. Line 15 sets the
variable N equal to a number chosen at random
between one and 50. This is the number which you
have to try and guess. The variable R is set equal
to one in Line 20. As you've probably realised, this
counts the number of guesses you make.

Line 25 prints up the number of the current guess,

53

and line 30 asks you to enter a number. The
following line checks the size of your guess,
rejecting it if it is above 50 or below one. Note
that Line 35 ends up with THEN 30, rather than THEN
GOTO 30, as you may have expected. You are allowed
to leave out the THEN before GOTO, as the computer
will understand what you mean. If you feel,
however, that the program is easier to understand
with GOTO in place, by all means replace it (and do
in the same in the following line, 40).

Line 40 checks the answer you've given, and if it
finds your answer is the same as the number the
computer has thought of, it sends action to Line 60
where the congratulations message is printed.

If you are not right, the program goes on to Line 45
where after printing a blank line, the 'no, you are
wrong' message is displayed. Now we come to the
interesting bit. The variable S is set equal to the
absolute difference between the computer's number
and your guess. The sound is produced in line 50,
one is added to the value of the variable R, and
then the computer returns to line 25 (via line 55)
for the next guess.

Just to show how this program works, try the
following exercise while running it. After a short
run of random guesses, hit CTRL BREAK to stop the
run and type PRINT N. This will display the number
that the computer is thinking of.

When you've noted it, type CONT and the game will
continue as before, with the computer asking you to
enter your guess Before doing that, enter a few
numbers around the number you saw, and note the
gradual change in pitch. Then hit the computer's

54

number and note the sharp contrast from the Lowest
pitch to the highest. You'll see that the tone gets
Lower and lower as you get nearer the number.

The computer is capable of producing some quite
exciting effects on its own, as our next program,

which demands no action from you execpt for
admiration, convincingly demonstrates. 	Take your
computer to Loch Lomond next time you go there, and
conjure up some Highland fancies.

5 REM - 	BAGPIPES
10 DIM N(8)
15 FOR 8=1 TO 8
20 READ N(S)

NEXT s
30 LET F=8*RND(4): IF F>31 THEN 7;0
35 LET D=(RND(2)*RND(4))
40 SOUND F,D: GOTO 30
45 DATA 1,3,5,7
50 DATA 2,4,6,8

MAKING YOUR OWN MUSIC

If the 'auto—bagpipes' are too much for you, try the
next program, which allows you to use the bottom row
of keys as a kind of organ. 	It is not too musical,
but you should have some fun with it, and it will

give you an insight into one way of using the SOUND
command.

5 REM - VZ ORGAN -
7 CLS
10 INPUT "ENTER A NUMBER FROM 1 TO 9"0
15 IF N< I OR N. THEN 10
20 CLS

55

E"; TAB (8), "V = F"
G"; TAB (8), "N = All
B"; TAB (8), It = C'"
D'"; TAB (8), " = E'

= END"
THEM TO PRODUCE t-40*TES" If

SOUND 4,N: GOSUB 130
SOUND 6,N: GOSUB 130
SOUND 8,N: GOSUB 130
SOUND 9,N: GOSUB 130
SOUND 11,N: GOSUB 130

=
=

it

35
40
45
50
52
55
60
65

25 PRINT:PRINT "THE BOTTOM ROW OF KEYS
ARE THE" " ORGAN KEYS" "

30 PRINT: PRINT " HERE IS A TABLE OF
THEIR USES, ": PRINT

= C";TAB(8), "X = D"

70
75
80
85
90

PRINT TAB(4);"Z
PRINT 1-AB(4);"C
PRINT 1-AB(4>;"B
PRINT TAB(4);I'M
PRINT TAB (4);".
PRINT TAB(4>;":
PRINT: PRINT "
GOSUB 130
IF
IF C$= "X"
IF C$= "C"
IF C$="V"
IF C$ ="B"

THEN
THEN
THEN
THEN
THEN

95 IF C$ ="N" THEN SOUND 13,N: GOSUB 130
100 IF C$="M" THEN SOUND 15,N: GOSUB 130
105 IF C$="," THEN SOUND 16,N: GOSUB 130
110 IF C$="." THEN SOUND 18,N: GOSUB 130
115 IF C$=" " THEN SOUND 20,N: GOSUB 130
120
125
130
135
140
145
150

IF C$=":" THEN GOTO 135
GOTO 65
C$=INKEY$:RETURN
CLS
PRINT: INPUT "WOULD YOU
IF A$="YES" THEN RUN

LIKE TO PLAY AGAIN";A$

To play the ORGAN, just touch the keys on the bottom
row of the keyboard, following this plan:

Z key produces the note C
X It 	II If II D
C ii il 	Ti 	11 	E
V II 	II If 11 F
B If II II II G
N II If If II A
M II II 11 II B

If If If If C I

If II If 11 D'

The organ will continue playing until you press the
key with the colon (:) on it, to the right of the ;
key.

COMPARISON SYMBOLS - A REVIEW

We all know the equals sign (=) and we've seen it in
use in several programs before. We've also seen the
'greater than' (>), the 'less than' (<) and the 'not
equals to' (<>). At this point of the book, I
thought it would be useful to briefly recap on what
each of these signs are, and what they mean:

= equals
> greater than
< less than

>= greater than or equal to
<= less than or equal to
<> not equal to

You'll see these in use in many programs in this
book.

57

58

Chapter Eight - A Game and a Test
It's time now to take a break from the serious
business of learning to program the computer. As you
can see in this chapter, we have two major programs
which use many commands which have not yet been
explained. I suggest you enter the programs just as
they are, play them for your own - enjoyment, then
come back to the explanations which follow the
listings after you've mastered the rest of the
book.

I do not think it's fair to keep you waiting for
major programs until you've covered everything on
the computer. Also, entering short demonstration
programs can get pretty boring if you're longing to
see your computer really in action. Therefore, I
hope you'll enter the programs 'on trust',
returning to this chapter for the explanations when
you feel you are ready. Of course, you do not have
to enter the programs right now. If you'd prefer to
continue with the learning, then move straight along
to chapter nine.

OUT ON THE FAIRWAY

In the first game, you and your versatile computer
have to tackle the Microchip Golfcourse, in the
program CADDY, prepared for this book by Glen
Pringle.

You have nine holes to negotiate, as as you'll see
when you play the game, the computer obligingly
keeps the score card for you. After each hole, it
will tell you how you are doing to date, and will
work out your average score per hole. All you have

59

to do is hit the ball! 	If you overshoot, the
computer will automatically make sure the next shot
is back towards the hole.

After that stroke your score is 5
The game so far:
Hole 1 took 7 strokes
Hole 2 took 5 strokes

The average so far is 6

Score up to this hole is 12
<<< Hole number 3 >>>

DIFFICULTY FACTOR IS FOUR
0

##########################\
###########################

/#########
##########

Enter stroke strength? 14

You did it!!
##########################\ /#########
########################## o #########

After that stroke your score is 9
The game so far:
Hole 1 took 7 strokes
Hole 2 took 5 strokes
Hole 3 took 9 strokes

The average so far is 7

The score for 3 holes is 21

60

You' LL find it pretty tricky going, eepec1aLiy on
hoisa with e high d1ff1cuLty fsntor.

He»rm'a the Listing, goLf pro:

10 REM CADDY
20 DIM X(9)oCO=0:H$=CHR$(216)
30 U=224:L$="
40 FOR Z=1 TO 9
50 SC='
60 J=RND(12)
70 Q=RND(3>+2
80 IF Q=5 THEN Q$="FIVE"
90 IF Q=4 THEN Q$=" FOUR "
100 IF 0=3 THEN Q$=" THREE "

110 CLS:PRINT:PRINT
120 IF Z=2 THEN PRINT "SCORE UP TO THIS

HOLE IS (1)
130 IF Z>2 THEN PRINT "SCORE UP TO THIS

HOLE IS"K

140 PRINT "<<< HOLE NUMBER"Z">>>"
150 PRINT:PRINT "DIFFICULTY FACTOR IS "Q$
160 GOSUB 430
170 PRINT: INPUT "ENTER STROKE STRENGTH"

;A:SOUND 31,2
180 PRINT@U,L$:IF J>24 THEN A=—A
190 J=J+I Ili- (A/RND(Q))
200 IF J=24 THEN GOSUB 490
205 IF J>30 THEN J=30:GOTO 205
207 IF J<1 THEN J=1

IF J<>24 THEN P N RIT@U+J-1,H$ 210
215 IF J<>24 THEN PRINT@352,L$:PRINT L$
220 SC=SC+1
230 PRINT@448,"AFTER THAT STROKE YOUR

SCORE IS" SC

61

240 FOR P=1 TO 2500wNEXT P
250 IF J<>24 THEN 110
260 C=C+SC
270 X(Z)=SC
280 IF Z=1 THEN 390
290 K=0
300 PRINT "THE GAME SO FAR:"
310 FOR J=1 TO Z
320 K=K+X(J)
330 PRINT " HOLE "J"TOOK JUST "X(J)"STROKES"
340 FOR 11=1 TO 300:NEXT M
350 NEXT J
360 IF Z<9 THEN PRINTxPRINT "THE AVERAGE SO

FAR IS"INT((K+.5)/Z)
370 FOR P=1 TO 1000:NEXT P
380 IF Z>1 THEN PRINT:PRINT "THE SCORE FOR"

Z"HOLES IS"C
390 IF Z=1 THEN RRINT:PRINT "THE SCORE FOR

THE FIRST HOLE IS"C
400 FOR M=1 TO 2500:NEXT M
410 NEXT Z
420 GOTO 560
430 IF J>30 THEN J=30
435 PR INT@196,""
440 PRINT TAB (J-1);H$
450 PRINT "######################\ /######"
460 PRINT "####################### #######"
470 PRINT

480 RETURN
490 PRINT@416,"YOU DID IT!!"
500 PRINT@311,H$
510 FOR P=1 TO 30(--):NEXT P
520 SOUND 21,4oSOUND 16,2xSOUND 16,1x

SOUND 18,4:SOUND 16,4
530 SOUND 0,1xSOUND 20,4:SOUND 21,4
540 FOR P=1 TO 2000oNEXT P

62

550 RETURN
56() PRINT:PRINT "END OF THAT ROUND, GOLFER!"
570 PRINT:PRINT "YOU SCORED"C
580 PRINT "AND YOUR AVERAGE WAS"INTNC-1-.5)/9)
590 PRINT:PRINT
600 PRINT "ENTER 'Y' FOR ANOTHER ROUND, OR

'N' TO QUIT"
610 A$=INKEY$
620 IF As... "Y" AND A$<> "N" THEN 610
67,0 IF A$="Y" THEN RUN
640 PRINT:PRINT "OK, THANKS FOR

PLAYING, CHAMP"

TESTING YOUR SPEEV

The second program in this chapter, REACTION TEST,
is great fun to play. You enter the program, type in
RUN, and the message STAND BY appears. After an
agnozing wait, STAND BY will vanish, to be replaced
with the words, "OKAY, HIT THE 'Z' KEY!". As fast as
you can, you leap for the Z key and press it,
knowing that the computer is counting all the time.

OKAY -. HIT THE 'Z.' KEY!

YOUR SCORE IS 27

THE BEST SO FAR IS 27

The computer then tell you how quickly you reacted,
and compares this with your previous best time.
"THE BEST SO FAR IS..." appears on the screen, and
the computer then waits for you to take your hands
off the keyboard to prevent cheating (as if you'd do
such a thing!) before the whole thing begins again.

63

The game continues unt1L you manage to get your
reaction time to bcLow 10" which is not on easy
toeh,

Here's the Listing of REACTION TEST:

5 REM — REACTION TEST —
7 CLS
10 LET HS=1000
15 FOR W=0 TO 999: IF HS<10 THEN 90
20 PRINT@236,"STAND BY"
25 GOSUB 105
30 GOSUB 100
35 IF A$<>"" THEN 25
40 LET C=0
45 PRINT@134,"OKAY — HIT THE 'Z' KEY!"
50 LET C=C+1
55 GOSUB 100: IF C>=200 THEN GOTO 90
60 IF A$<>"Z" THEN 50
65 PRINT: PRINT "YOUR SCORE IS";C
70 IF C<HS THEN LET HS=C: SOUND 30,2
75 PRINT: PRINT "THE BEST SO FAR IS ";HS
80 GOSUB 105: GOSUB 100
85 IF A$<>" THEN 80 ,
90 NEXT W
95 PRINT: PRINT "YOU'RE THE CHAMP":

SOUND 31,5: END
100 LET A$=INKEY$o RETURN
105 FOR P=0 TO 499+RND(999): NEXT P:

CLSx RETURN

Line 20 sets the nor1sbie M8 to 1000. The voriobLo C
10 set to zero in Line 50 and incremented by one
every time this i1ns is revisited, which occurs when
you have not managed to get to the 'Z` key, ijnoa
55 and 60 check to oom if you have touched the Z

64

key, and if not, send the program back to 50 where C
is incremented.

Once you've managed to get to Z, the program 'falls
through' to line 65 where you are told your score.
This is compared with the best score (variable name
HS) in the following line, and HS is adjusted to C
if C is the lower of the two.

The next line (80] puts in a short pause, and then
checks to make sure you have taken your hands off
the keyboard. It stays cycling through 80 and 85
until you take your hands off the keys. The NEXT W
then sends the program back to the Line after the
FOR (line 15) and the next round of the game begins.

The FOR/NEXT continues only so Long as HS stays
greater than 10 (as you can see in line 15). Once
you get a high score below 11, the program continues
through the NEXT to lines 15 where the words "YOU'RE
THE CHAMP!" appear on the screen, and SOUND 31,1 is
activated.

65

66

Chapter Nine - Stringing Along

You'll recall that several times in this book so far
we have referred to numeric variables (Letters like
A or B, words Like CN and GS, and combinations such
as R2 and C3) and to string variables (a Letter
followed by a dollar sign, such as A$ or G$ is a
string variable). In this chapter, we'll be looking
at strings, and at things you can do with them.

THE CHARACTER SET

Every letter, number or symbol the computer prints
has a code (the code, by the way, is an ASCII code
and ASCII is explained in the glossary). Telling the
computer to print the character of that code prod—
uces the character.

It is easy to understand this. As the code is an
ASCII code, as I pointed out above, the computer
word for the code is ASC. 	Note that the ASC value
for the letter "A" has nothing to do with the value
assigned to A when it is a numeric variable, but
refers to "A" when we actually want the computer to

print the letter "A". Note that we put the "A" in
quote marks when we're referring to it as a letter.

Try it now. Enter the following into your computer,
and see what you get:

PRINT ASC("A")

Note that the letter for which you want the ASC must
be within parentheses and also within quote marks,
as above. Now when you get the computer to run the
above line, it should give the answer 65.

67

From this we can see that 65 is the ASC (ASCII code)
of "A". We can turn a 65 back into an "A" by asking
the computer to print the character which
corresponds to ASC code 65. We do this with the
BASIC word CHRS, as follows:

PRINT CHR$(65)

Run this, and the letter "A" will appear. You can
print out every ASC code and its character with the
next short program. Enter it, and watch closely:

5 REM — CHR% —
10 FOR 8=32 TO 255
15 PRINT C; CHRS(C);" ";
20 FOR 1)=0 _TO 99: NEXT D
25 NEXT C

This is the start of the printout you'll see:

, 33 ! 34 ,. .,:.- 35 # 36 $ 3
7 % 38 & 39 ' 40 (41) 42
* 43 + 44 	45 — 46 . 47 /
48 0 49 1 50 2 51 3 52 4 5
3 5 54 6 55 7 56 8 57 9 58

59 z 60 < 61 = 62 > 63 2
64 @ 65 A 66 8 67 C 68 D 6
9 E 70 F 71 8 72 H 73 I 74
3 75 K 76 L 77 M 78 N 79 0
80 P 81 Q 82 R 83 8 84 T 8
5 U 86 V .87 W 89 X 89 V 90
Z 91 C 92 \ 93 :I 94 ' 95

	

96 	97 ! 98 " 99 # 100 $

68

TESTING YOUR CHARACTER

Our next program is a reaction tester like the one
you experienced earlier. However, you are not just
being tested on speed. In this program, you have to
try and find the right key on the keyboard as
quickly as possible.

A letter will appear on the screen. As quickly as
you can, find that letter on the keyboard and press
it. You'll be told how long it took you, and this
time will be compared with your best time.

Notice how the letter which is printed on the screen
uses CHR$ in line 30, printing the character of the
number chosen at random by tine 15 and assigned
there to variable A. A$ is set equal to INKEY$
(which is explained a little Later in the book) in
line 35 and compared with the letter the computer
has chosen in line 40.

5 REM — CHARACTER TEST —
7 CLS
10 LET 13E51=200
15 LET A=65+RND(26)
20 LET 8=0

PRINT@(32*13+7),
30 PRINT CHRS(A)
35 LET AV=INKEY$
40 IF A$=CHR$ (A) THEN GOTO 70
45 LET S=8+1
50 PRINTa)(32*9-1-5),
55 PRINT S
60 IF 8<200 THEN GOTO
65 PRINT "SORRY — YOUR TIME IS UP": GOTO 80
70 SOUND 30,3: PRINT "WELL DONE — YOU SCORED"

69

75 PRINT S;"ON THAT ONE"
80 IF S<BEST THEN LET BEST=S
85 PRI NT: PRIKIT
90 PRINT "THE BEST SCORE SO FAR IS";BEST
95 FOR P=0 TO 19*G~ NEXT P: CLG: GOTO 15

CUTTING THEM UP

One of the very uosfuL aspects of the BASIC on your
computer is the way it can be used to msnipuLate
strings. The words used to handio strings are:

LEFT$
MIO$

(By the woy, these are uauaiiy spoken oLoud as
`Loft—string', 'mid—otring' and 'r1ght—otr1nQ'.]

The next program shows them in action. Enter it and
run it on your computer, then return to the book for
s discussion to show what can be Learned from it.

5 REM — STRINGS —
7 CLS
10 LET A$="FIFTH*AVENUE"
15 PRINT "LEFT$(A$,3)=";LEFT$(A$,3):
20 PRINT "LEFT$(A$,5)=";LEFT$(A$,5): GOSUB
25 PRINT "RIGHT$(A$,3)=";RIGHT$(A$,3): GOSUB

"RIGHT$(A$,5)=";RIGHT$(A$,5)x GOSUB
"MID$(A$,3)=";MID$(A$,3): GOSUB 55

GOSUB 55
15 5

30
35
40
45
50
55

PRINT
PRINT
PRINT "MID$(A$,5)=";MID$(A$,5): GOSUB 55
PRINT "MID$(A$,5,4)=";MID$(A$,5,4): GOSUB
PRINT "MID$(A$,2° 7)=";MID$(A$,2,7)x END
FOR P=0 TO 499: NEXT P: RETURN

70

As you can see, the program first (in line 10) sets
A$ equal to "FIFTH*AVENUE". Then it uses LEFT$,
RIGHT$ and MID$ to extract of the original string,
A$.

Here's what it looks tike when you run it:

LEFTS (AS, 5) =1:: I FTH

R I GHTS (A$) =NUE

R GHT $ (AS a 5) =VENUE

PI ID$ (AS „ 3) =FTH*AVENUE

11I D $ (A $,) * AVENUE

11 I DS (A$, 5, 4) =H*AV

11 I DS (A$, , 7) IF-H-0AV

Look at the first line of the output. LEFTSCAS,3) =
FIF. LEFT$ takes the leftmost portion of the string
as far as the number which follows the string. That
is, when we have LEFTS(AS,3) it takes the three
leftmost characters of the string. The next
printout, LEFTS(AS,5) takes the five leftmost
characters of the string, producing in this case
FIFTH (because they are five leftmost characters of
the overall string).

It can be used slightly differently. If we said:

PRINT LEFT$("FIFTH*AVENUE",3)

the computer would print out FIF. The string, then,
can either be a string variable (A$) or the string

71

in full ("FIFTH*AVENUE").

As you've probably worked out by now, RIGHT$ does
the same thing as LEFT, except it starts at the
righthand end of the string. Therefore,
RIGHTCAS,3) selects the three rightmost characters
of the string, in this case NUE. 	Again, as above,
this is the same as saying:

PRINT RIGHT$("FIFTH*AVENUE",3)

MID$ is a little more flexible. 	It selects a
portion from the middle of the string, starting from
the character number which follows the string.
Therefore, MID$(A$,4) prints all the string starting
with the fourth character.

If there is only one number (such as the 4 above),
then MID$ selects all of the string to the end of
it. 	However, if there is another number, this
second number dictates the length of the string
which will be extracted.

You can see in the last two printouts from the
program that MIDCAS,5,4) prints the extract of the
string four characters long, starting from character
five. MID$(A$,2,7) produces a string seven
characters long, starting from the second character.

Rerun the program now, putting your name in place of
FIFTH*AVENUE in line 10.

PUTTING THEM SACK TOGETHER

Strings can be added together on the computer. The
process of adding strings is called the frightening-

72

looking word concatenation. You can concatenate two
or more complete strings together, or just add bits
of them, as our next program shows:

5 REM — STRINGJOIN
7 CLS
10 LET A$="AMERICA"
15 LET B$="COLUMBUS"
20 LET C$=A$±B$
17)5 PRINT "A$="0$: PRINT
74:0 PRINT "B$=";B$: PRINT
35 PRINT "C$=";C$: PRINT
40 LET D=RND(6): LET E=RND(6)+7
45 PRINT "MIDS(C$"D","E")=";MID$(C$,D,E)
50 LET D$=MID$(C$,D,E)
55 LET E$=A$A-D$
60 PRINT 'E$="; E$

When you run this program, which creates C$ in line
35 by concatenating A$ and B$, you'll see results
Like these:

A$=AMERICA

B$=COLUMBUS

C$=AMERICACOLUMBUS

MIDS(C$ 1 , 9)=AMERICACO

ES=AMERICAAMERICACO

PLAYING AROUND

You can do a number of things with string manip—
ulation, as our next program demonstrates. NAME
PYRAMID allows you to enter your name to produce a

73

very interesting diepisy, Once you've seen the
program running, you' LL understand why the program
has been given the name it has,

This is the Listing of NAME PYRAMID:

5 REM -- NAME PYRAMID —
7 CLS
10 PRINT: INPUT "WHAT IS YOUR FULL NAME";N$: CLS
15 IF LEN(N$)>15 THEN LET N$=LEFT$(N$,15)
20 LET N=LEN(N$)
35 FOR L=1 TO N
40 PRINT TAB (16—L);
45 FOR H=1 TO 2*L
50 PRINT 11ID$(N$,L,1);
55 NEXT H: PRINT
60 NEXT L

And here are two runs of the program, the first
using the name of s famous firtionaL character
(created by Ian Fism1ng] and the second uses one of
our names, JJ

A A A A
MMMMMM

EEEEEEEE
NN

SSSSSSSSSS
L LEE

VIVIVVVV
BBBBBBBBBBBBBB

nnnnnnnrxlnnnnnnn
PPPPPPPPPP

NNNNN NNNN RRRRRRRRRRRR
DDDDDDDDDDDDDDDDDDDDEEEEEEEEEEEEEE

DDDDDDDDDDDDDDDD
EEEEEEEEEEEEEEEEEE

BBBBBBBBBBBBBBBBBBBB
OOOOOOOOOOOOOOOOOOOOOO

NNNNNNNNNNNNNNNNNNNNNNNN

74

PLAYING IT BACK

Our final program in this chapter shows one very
effective use of string manipulation, in which a
string is progressively reduced by one element.

When you run ECHO GULCH, you'll see a letter appear
on the screen. It wilt then vanish. Once it has
vanished, you will have a limited amount of time in
which to press the key yourself.

If you've pressed the right key, a beep will sound,
and the letter will be replaced with a new one. This
will stay on the screen for a shorter time than the
previous one.

Each time a new letter appear, you will be given
Less time to see it, before you have to press that
particular key on the keyboard. 'If you make a mis—
take, the "SORRY, THAT IS WRONG" message will
appear, along with your score. If you manage to get
all the list of letters right, you'll be rewarded
with a "YOU'RE THE CHAMP!!" message.

Here's the listing:

5 REM — ECHO GULCH —
7 CLS
10 LET 8=0
15 LET A$="ABSCHDEUFKJHJHEUSKCJKMLKES3KDHC"
20 PRINTG)(32*12+15),
25 PRINT MID$(A$,1,1)
30 GOSUB 95
35 LET I$=INKEY$
40 IF I$:. „ A" OR 1$>1$ THEN GOTO 35
45 PRINT@(32*121-15),1$

75

50 IF IS=MIDS(AS,1,1) THEN GOSUE 100
55 PRINT5)(32*54-1),"YOUR SCORE IS";S
60 PRINT5)(32*12+15),"
65 IF Iii<>MID$(As,1,1) THEN GOTO 85
70 LET A$=MIDS(AS,6)
75 IF LEN(AS)=1 THEN GOTO 105
80 GOSUB 95: GOTO 20
85 PRINT: PRINT "SORRY, THAT'S NOT QUICK

ENOUGH"
90 PRINT: PRINT "YOU SCORED";S: END
95 FOR D=0 TO 19*LEN(A10: NEXT D: CLS

RETURN
100 FOR N=0 TO 3: SOUND 31,2: NEXT N:

LET S=S+1: RETURN
105 PRINT "YOU'RE THE CHAMP!"

The variable S, which holds your score, is set to
zero in line 10, and line 15 sets the string
variable A$ to a long line of letters. Line 25
prints the first letter only of the string, and line
30 inserts a short delay loop via a subroutine,
which uses the LEN function.

This is another string function, and returns the
length of a string, that is, the number of char—
acters which make it up. LEN does not make any
distinction between letters, numbers, symbols or
spaces, as you'll discover if you enter a number of
PRINT LEN A$ statements, after setting A$ to equal
various words, symbols and sentences.

Because, in our program A$ is reduced by one
character by Line 70 each time the program cycles,
LEN A$ is a smaller number each time. Therefore,
the delay produced by line 30 (which dictates how

76

Long the character will be on the screen before it
vanishes) becomes shorter.

INKEY$

Line 35 uses INKEY$ to read the keyboard. INKEY$, as
you've probably worked out by this point in the
book, does not demand that you press RETURN after
touching a key. INKEY$ always returns the key you
have pressed as a string. INKEY$ does not, in
contrast to INPUT, WAIT until you have pressed a key
before the program continues.

If you are not touching a key when the program comes
to an INKEY$, it simple passes right through the
line, reading your non—touching of the keyboard as
the null string (two quote marks with nothing, not
even a space, between them, as "").

Line 40 looks at 1$, the variable which is set equal
to whichever key is being pressed as the program
goes through Line 35. As you can see in line 60,
you can use the greater than (>) and the less than
(<) symbols, which we discussed in chapter eight, in
connection with strings. These look at all elements
of a string and compare them in terms of
alphabetical order,

As well, you can compare strings using equals (=)
and not equals (<>) as it shown by the next few
lines of the program. Line 50 compares the key you
have pressed with the first element of A$, and if
they are the same, continues through the line to
subroutine 100, which adds one to your score
(variable 5).

77

Line 60 then blanks out the Letter, in preparation
for the next one to appear. Line 65 compares 1$ with
the first element of A$ again, and if it finds they
are not equal, sends the program to lines 85 and 90
where you are told "SORRY THAT'S NOT QUICK ENOUGH"
and your score is given.

Line 70 strips the string A$ of its first character,
by setting A$ equal to MIDS(A$,63. Line 75 checks to
see if the length of A$ equals 1 (that is, if LEN A$
= 1) and if it finds that it is, goes to line 105 to
print out the "YOU'RE THE CHAMP!!" message. If not,
the program cycles back to line 20 to print out the
next letter for you.

78

Chapter Ten - Reading DATA
In this chapter, wa'LL be booking at three very
uosfuL additions to your programming voumhuLery:
READ, DATA and RESTORE. They are used to get inform—
ation stared in one pert of the program to another
pert where it can be used.

Enter and run this program, which ahouLd make this e
L1ttLs cissrsr:

5 REM — RD —
7 CLG
10 DIM A(5)
15 FOR B=1 TO 5
20 READ A(B): PRINT A(B)
25 NEXT B
30 DATA 3676,335,-89878,2142.8787,45

Using Lins 20, the program REAOa through the DATA
statement in Line 80 in order, printing up each i.tem
of DATA with Line 20,

RESTORE moves the computer back to the first item of
DATA is the program, as ys:"LL df000nar if you
modify the above program by adding Line 22, so it
reads as foLLowe:

5 REM — RDR —
7 CLS
10 DIM A(5)
15 FOR B=1 TO 5
20 READ A(B): PRINT A(B)
22 IF B=3 THEN RESTORE
25 NEXT B
30 DATA 3676,335,-89878,2142.8787,45

It does not matter where in the program the DATA is

79

stored. The computer will seek it out, in order from
the first item of DATA in the program to the last,
as our next program (which scatters the DATA
about in an alarming way) convincingly demonstrates:

1 DATA 22
5 REM — SCAT RD —
7 CLS
[0 DIM A(S)
15 DATA 111
20 FOR B=1 TO 5
25 READ A(B): PRINT A(B)
27 DATA 246
7;0 NEXT B
7" DATA 123.456,9876543210

READ and DATA work just as well with string
information:

5 REM — STRING RD —
7 CLS
10 FOR B=1 TO 5
15 READ A$: PRINT A$
20 NEXT B
25 DATA VZ20000MPUTE,PROGRAM,EXECUTE,WIN

Note that string DATA does not have to be enclosed
within quote marks, unless leading or trailing
spaces, and/or punctation and symbols are
significant and must be considered part of the DATA.

You can mix numeric and string DATA within the same
program, so long as you take care to ensure that
when the program wants a numeric item, a number
comes next in the program, and when it wants a

80

string item, it finds it:

5' REM —ALPHNUM RD —
7 CLS
10 FOR B=1 TO 5
15 READ A$,A: PRINT A$,A
20 NEXT B
25 DATA MAY,2,SIMPLE,1,BY,5,HOW,7,STREET,4

81

82

Chapter Eleven - Adding Life to Programs

As you're becoming increasingly aware, you have a
very versatile computer on your hands, one which is
capable of some really innovative functions. It's
possible to write some great programs using some or
all of these features. So far in this book, we've
looked at most of these features in isolation. In
this chapter, we're going to try to put as many of
them as possible into one program. This process
should give you an insight into how a simple program
can be elaborated into a major one.

We are going to take a very simple concept and
develop a versatile games program around it. We'll
start with a 'skeleton' program -- one which is the
just the bare bones of the final. product -- and
gradually build around it to create a much more
complex game.

We do this by adding features such as color, sound,
scoring, error traps and a better display. Our basic
aim is to use as many as possible of the things
we've learned in one program, and to use them
efficiently. There is no point in just 'dressing
up' a program and wasting memory; each thing we add
to the program must earn its keep by making a real
contribution.

The program we are going to develop is called
NUMGESS. As your brilliant mind has probably already
deduced, it is a number guessing game. The aim of
the game is to discover the number the computer has
thought of. The machine helps by providing feedback
on the accuracy of your guesses. You have a limited
number of guesses per game.

83

Here's the Listing of the first version of the

5 REM —## NUMGEGS ##—
7 C L Sj
10 PRINT@108,"<NUMGESS>": PRINT@293,"A

NUMBER GUESSI1A8 GAME"
15 FOR DELAY =0 TO 999: NEXT DELAY: CLS
20 PRINT@70,"INSTRUCTIONSx—": PRINT
25 PRINT "YOU WILL HAVE 10 CHANCES TO GET"
30 PRINT "THE NUMBER THAT I'M THINKING OF,";
35 PRINT "WHICH IS BETWEEN 1 AND 100."
40 PRINT@327,"HIT 'G' TO START."
45 A$=INKEY$: IF A$<>"S" THEN 45
50 CLS
55 NUMB=RND(100)
60 FOR ROUND=1 TO 10
65 	PRINT: INPUT " 	WHAT IS YOUR GUESS";GUESS
70 	IF GUESS=NUMB THEN 105
75 	IF GUESS::-NUMB THEN 85
80 	PRINT: PRINT TAB (4);"HIGHER": GOTO 90
85 	PRINT: PRINT 'TA B(4);"LOWER"
90 NEXT ROUND
95 FOR DELAY=0 TO 99: NEXT DELAY: C L S
100 PRINT@260,"SORRY _ YOU MISSED IT.": END
15 CLS: PRINT 0 	@6 4,"THAT'S CORRECT! YOU'VE

WON All ,"FREE GAME'"
110 RUN 50

We'LL go briefty through this first version. Lines
10 to 35 are the instructions, t=LL1ng you what the
program is about. They inform you that you'LL have
ten chances to guess the number the computer is
thinking about. This number is between 1 and 100,
Lines 40 and 45 ash you to hit the IS' key when
you've read the instructions. Note Line 45~ It scans
the keyboard over and over again unt1L it discovers

84

that you have hit the 'S' key. If you don't hit 'S',
it loops through itself again. Line 50 clears the
screen.

The following line sets the variable name NUMB to a
random number between 1 and 100. The next lines, 60
through to 90, begin the playing loop. The FOR
variable ROUND is set from 1 to 10. Line 65 asks you
for, and accepts, your guess.

The next two lines decide what to do with your
input. If your guess is equal to the variable NUMB,
then you've won, and the program jumps out of the
loop to line 105 (the winner's box). If, however,
your guess does not equal NUMB, then you are moved
to line 75. This decides whether or not your number
is greater than NUMB, and if so, moves action to
tine 85. If not, the program 'falls through' to 80,
which tells you you are too low, then moves onto
the NEXT statement in line 90.

If you have ten tries, and do not guess the number,
Line 100 is used to tell you you've failed. You get
a free game only if you manage to guess the number.

The game is OK as it is, but it could easily be
enhanced. Try the next version, which adds a score
facility:
5 REM —## NUMGE882 ##-
7 CLS
10 PR I NT:D108 " NUMGESS > " 2 PR I NT29:3, 11 A NUMBER

GUESSING GAME"
15 GOSUB 140
20 PRINT@70,"INSTRUCTIONS:—": PRINT
25 PRINT "YOU WILL HAVE 10 CHANCES TO GET"
30 PRINT "THE NUMBER THAT 	THINKING OF

85

PRINT "WHICH IS BETWEEN 1 AND
PRINT@327,"HIT 'S' TO START."
I$=INKEY$: IF I$<>"S" THEN 45
SC=20
CL-.c:-)'
NUMB=RND(100)
FOR ROUND=1 TO 10
PRINT: PRINT TAB(2);"THI1.3)

;ROUND

;GUESS
IF GUESS=NUMB THEN 105
IF GUESS>NUMB THEN 85

80 PRINT: PRINT TAB(4);"HIGHER":
85 PRINT: PRINT TAB(4);" LOWER "
90 GOSUB 140: NEXT ROUND
95 GOSUB 140
100 PRINT@260,

110 SC=SC+5
115 PRINT: PRINT TAB(3);"YOUR SCORE IS NOW";SC
120 GOSUB 140: IF GUESS=NUMB THEN 50
125 PRINT@256,"WOULD YOU LIKE ANOTHER GAME";
130 INPUT A$: IF A$="Y" THEN RUN 50
135 PRINT: PRINT TAB(5>;"VERY WELL."is, END
140 FOR DELAY=0 TO 999: NEXT DELAY: CLS: RETURN

WaLL, that's quite o difference, The first obvious
ohon@o is that the dmLey has been made into s
subroutine in Line 140, Lines 15, 90, 85 and 120 now
have acomoo to it, but the subroutine in Line 95
ohouLd nsoLLy be ei1minotsd.

Other additions incLude Line 62 which teLLs you

35
40
45
47
50
55
60
62

65 PRINT: INPUT " WHAT IS PRINT: INPUT "

IS ROUND NUMBER"

YOUR GUESS"

100.` '

70
75

GOTO 90

"SORRY — YOU MISSED IT.":
SC=SC-5: GOTO 115

105 CLS: PRINT@64,"THAT' E S CORRCT! YOU'VE
WON A" "FREE GAME'" , .

which round you are up to. Line 47 sets SC (for
score) to 20. Additions have been made to lines 100
and 110 to reset the score according to the outcome,
that is, whether you have won or Lost. Your new
score is shown by line 115. Losers now have the
chance to play again with the help of line 125,
while winners go straight back to 50 (see line 120).
If winners want to play again, they are sent back to
line 50; if not, the game ends with the words "VERY
WELL".

One serious problem which can occur with programs is
a result of the player misreading the instructions,
and entering, for example, a Letter when a number
has been requested. In the next version of NUMGESS,
several 'error traps' (or 'mug traps' as they are
often called) are included to prevent user error
causing the program to crash. Here's the third
version:

5 REM —## NUMGESS:3 ##-
7 CLS
10 PRINT@107,"<NUMGESS>": PRINT@293,"A

NUMBER GUESSING GAME"
15 GOSUB 140
20 PRINTWO,"INSTRUCTIONS:—": PRINT
25 PRINT YOU WILL HAVE 10 CHANCES TO GET"
30 PRINT "THE NUMBER THAT I'M THINKING OF,
35 PRINT "WHICH IS BETWEEN 1 AND 100."
40 PRINT@327,"HIT 'S' TO START."
45 I$=INKEY$: IF 1$<>"S" THEN 45
47 SC=20
50 CLS
55 NUMB=RND(100)
60 FOR. ROUND=1 TO 10
62 PRINT: PRINT TAB(2);"THIS IS ROUND

NUMBER";ROUND

87

L PRINT: INPUT " WHAT IS YOUR GUESS"
;GUESS

66 IF ROUND=10 THEN 100
67 IF GUESS <0 OR GUESS >100 THEN GOSUB

145: GOTO 62
70 IF GUEGS=NUMB THEN 105
75 IF GUESS>NUMB THEN 85
80 PRINT: PRINT TAB(4);"HIGHER": GOTO 90
85 PRINT: PRINT TAB(4);"LOWER"
90 GOSUB 140: NEXT ROUND
100 PRINT@260n"SORRY — YOU MI8SED IT.":

8C=SC-5x GOTO 115
105 (',%L-S: PRINT@64,"THAT'S CORRECT! YOU'VE

WON All "FREE GAME'"
110 SC=SC+5
115 PRINTx PRINT TAB(3);"YOUR SCORE IS NOW";SC
120 GOSUB 140: IF GUESS=NUMB THEN 50
125 PRINT@256,"WOULD YOU LIKE ANOTHER

GAME";: DIM A$(1)
130 INPUT A$: IF A$="Y" THEN 50
135 PRINT: PRINT TAB(5);"VERY WELL.": END
140 FOR DELAY=0 TO 999: NEXT DELAY: CLS

: RETURN
145 CLS: PRINT@16,"SICK 6 T TO THE RULES!": PRINT
150 PRINT: PRINT "THAT NUMBER WAS UNACCEPTABLE."
155 PRINT "YOUR INPUT SHOULD HAVE BEEN"

"BETWEEN 1 AND 100." ,
160 PRINT: PRINT TAB(4);"TRY AGAIN.":

GOSUB 140: RETURN

Again you 'LL see this provides a considmrehLs
improvement. The additions in this version guard
against most mrroro. However, if you find someone
using your program manages to get past the traps
you've buiLt in, try and write traps which wfLL stop
this happening ege1r. Trying to mug—trap programs

proves the truth of the old saying: THE TROUBLE WITH
TRYING TO MAKE THINGS FOOLPROOF, IS THAT FOOLS ARE
SO INVENTIVE.

You'll see that this version of the program has a
'number barrier' check. This means that if your
input is lower than 0 or greater than 100, the
program will enter the subroutine at line 145 and
tell you off. After a short delay, it will return
you to the program again at Line 62. Notice how the
delay subroutine is accessed from inside the
'telling off' subroutine at line 160.

Another addition is line 66. This is only activated
when the FOR variable ROUND is equal to ten. Instead
of telling you whether you were too high or too low,
it cuts out that delay and jumps straight to line
100, where you are told that you've lost.

The final addition lies at the end of line 125. The
DIM statement sets the reply to one character only,
so you can write YES, NO, Y, N, NO WAY, YO, NOT
LIKELY or even YESSIRREE. The computer will read —
and act on — the first character only.

The listing is, as you can see, getting quite
complicated, although the game itself is still
pretty straightforward. There are a few leaps and
conditional actions, but nothing random to confuse
you, or challenging to test you. The next version
remedies this. It provides several variations of the
basic game format to keep you on your toes.

You'll see this, when you enter and run version four
of NUMGESS:

89

NUMGESS4 ##-
7 CLS
10 PRINT@107,"<NUMGESS>": PRINT@293,"A NUMBER

GUESSING GAME"
15 GOSUB 140
20 PRINT@70,"INSTRUCTIONS:—": PRINT
25 PRINT "YOU WILL HAVE 10 CHANCES TO GET"
30 PRINT "THE NUMBER THAT I'M K THINING OF,";
35 PRINT "WHICH IS BETWEEN 1 AND 100."
40 PRINT@327,"HIT 'S' TO START."
45 I$=INKEY$: IF I$<>"S" THEN 45
46 PLAY=10
47 SC=20
48 LIM=100
50 CLS
55 NUMB=RND(LIM)
60 FOR ROUND=1 TO PLAY
62 PRINT: PRINT TAB(2);"THIS IS ROUND

NUMBER ";ROUND
64 IF ROUND=PLAY THEN PRINT TAB (2)o"THIS

lS YOUR LAST ROUND."
65 PRINT: INPUT If WHAT IS YOUR GUESS"

;GUESS
66 IF ROUND=PLAY THEN CLS: GOTO 100
67 IF GUESS<1 OR GUESS>LIM THEN GOSUB 145:

GOTO 62
70 I GUESS=NUMB THEN 105 F
75 IF G LIE SS>NUMB THEN 85
80 PRINT: PRINT TAB (4);"HIGHER": GOTO 90-
5 PRINT: PRINT TAB(4);"LOWER"

90 GOSUB 140
95 NEXT ROUND
100 PRINT@196,"SORRY — YOU MISSED IT. IT"

WA Ell ";NUMB
102 LIM=LIM-10
103 IF LIM<=30 THEN LIM=30
104 GOSUB 165x GOTO 115

105 PRINT@64,"THAT'S CORRECT! YOU'VE WON A",
"FREE GAME"

110 SC.:SC-I-5: PLAY=PLAY-2: LIM=LIMA-50
112 IF PLAY <=4 THEN PLAY=4: GOSUB 165
115 PRINT: PRINT TAB(3);"YOUR SCORE IS NOW";SC
120 GOSUB 140: IF GUESS=NUMB THEN 50
125 PRINT@256,"WOULD YOU LIKE ANOTHER GAME";
130 INPUT A$: IF LEFTS(A$0)="Y" THEN 50
135 PRINT: PRINT TAB(5);"VERY WELL.": END
140 FOR DELAY=0 TO 999+RND(299): NEXT DELAY:

CLS: RETURN
145 CLS: PRINT@166,"STICK TO THE RULES!": PRINT
150 PRINT: PRINT "THAT NUMBER WAS UNACCEPTABLE."
155 PRINT "YOUR INPUT SHOULD HAVE BEEN"

"BETWEEN 1 AND 100."
160 PRINT: PRINT TAB(4);"TRY AGAIN.": GOSUB 140:

RETURN
165 PRINT: PRINT " YOUR NEXT GAME WILL HAVE";

PLAY," ROUNDS,";
170 PRINT " AND THE LIMIT WILL BE",;" ";LIM
175 GOSUB 140: RETURN

As you can see, the listing is getting quite
crowded. Some of the line numbers have no room
between them and the next line (such as 64, 65, 66
and 67) leaving no room to add new lines between
them. It is best to try and write your programs with
line numbers 5 or 10 apart so you can add extra
material if the need to do so arises.

As the game progresses in this version, certain
conditions are followed. The limit will become
higher or lower according to whether you win or
lose, and you will have a larger or smaller number
of chances in your next game, depending on the
outcome. If you win, you'll be given fewer guesses

91

in the following game, and the upper limit of the
number to be guessed will rise by 50. If you lose,
you'll be given two extra rounds, and the Limit will
fall by 10.

Notice that some of the variables have been changed.
The FOR/NEXT Loop which starts in line 60 has an
upper limit of a variable called PLAY, rather than
10, as in the previous versions. NUMB now equals a
random number less than LIM, rather than less than
100. The DIM statement has been removed and has been
replaced by LEFT$. The major addition is the section
in line 165 onwards. This subroutine tells you about
the new situation which faces you in your next game.

Well, we've almost finished, but not quite. We
thought the program was too quiet, so decided to add
some noise. Our next version takes care of the
sound, and adds a few other things as well (note
that you should replace the 32 spaces in line 12
with the graphics character you get from shifted J,
to provide a colored line) :

5 REM —## NUMGESS5 11-
7 CLS
10 PRINT@107,"<NUMGESS>": PRINT@261,"A NUMBER

GUESSING GAME"
12 COLOR RND(8): PRINT "
15 GOSU B 140
20 PRINTWO,"1NSTRUCTIONS:—": PRINT
25 PRINT YOU WILL HAVE 10 CHANCES TO GET"
30 PRINT "THE NUMBER THAT I'M THINKING OF,
35 PRINT "WHICH IS BETWEEN 1 AND 100."
40 PRINT@327,"HIT 'S TO START."
45 I$=INKEY$: IF 1$<>"S" THEN 45
46 PLAY=10
47 SC=20

92

48 LIM=100
50 CLS
55 NUMB=RND(LIM)
60 FOR ROUND=1 TO PLAY

: PRINT TAB 	IS ROUND 62 	PRINT
NUMBER "VROUND

64 	IF ROUND-PLAY THEN PRINT TAB(2);11 THIS
IS YOUR LAST ROUND."

65 	PRINT: INPUT " 	WHAT IS YOUR GUESS"UGUESS
66 IF ROUND=PLAY THEN CLS: GOTO 100
67 	IF GUESS-`l OR GUESG>LIM THEN GOSUB

145: GOTO 62
70 	IF GUESS=NUMB THEN 105
75 	IF GUESS>NUMB THEN 85
80 	 PRINT: PRINT TAB(4>;"HIGHER": GOTO 90
85 	PRINT: PRINT TAB(4);"LOWER"
90 GOSUB 140
95 NEXT ROUND
100 SOUND 9,4: PRINT@192,"SORRY - YOU MISSED

IT. IT","WAS";NUMB

102 LIM=LIM-10
103 IF LIM<=30 THEN LIM=30
104 GOSUB 165: GOTO 115
105 GOSUB 180
110 SC=SC+5: PLAY=PLAY-2
111 LIM=LIM+50
112 IF PLAY<=4 THEN PLAY=4
113 GOSUB 165
115 PRINT: PRINT TAB(3);"YOUR SCORE IS NOW";SC
120 GOSUB 140: IF GUESS=NUMB THEN 50
125 PRINT@256,"WOULD YOU LIKE ANOTHER GAME";
130 INPUT A$x IF LEFT$(A$,1)="Y" THEN 50
135 PRINT: PRINT TAB(5);"VERY WELL.": END
140 FOR DELAY=0 TO 999+RND(299)%: NEXT DELAY:

CLS: RETURN

93

145 CLS: SOUND 1,5: PRINT166,"STIrK TO THE
RULES!": PRINT

150 PRINT: PRINT "THAT NUMBER WAS UNACCEPTABLE.
155 PRINT "YOUR INPUT SHOULD HAVE BEEN

"BETWEEN 1 AND 100."
160 PRINT: PRINT TAB(4);"TRY AGAIN.": GOSUB

140: RETURN
165 PRINT: PRINT " YOUR NEXT GAME WILL HAVE"

PLAY," ROUNDS,";
170 PRINT " AND THE LIMIT WILL BE",;" ";LIM
175 GOSUB 140: RETURN
180 FOR WIN=0 TO 5: CLS: SOUND 31,1:

PRINT@RND(492),"CONGRATS!"
185 NEXT WIN
190 PRINT@64,"THAT'S CORRECT! YOU 	WON A",

"FREE GAME": RETURN

There's quite a difference between that version, and
the one which first appeared in this chapter, isn't
there? If you win in this version, you are greeted
by the display in subroutine 180.If you Lose, the
computer lets you know what it thinks of you with
the noise created by line 100. Another result awaits
you if you try to enter numbers outside the limit.

To emphasise certain words, you should put the
strings in Lines 20, 40, 64, 125, 145 and 180 in
inverse video. The word NUMGESS in Line 107 should
also be in inverse.

The program is now in pretty good shape, although
the Listing is very cluttered. Some of the line
numbers are very close to each other, and the
subroutines are not clearly marked. So here is the
final, properly—formatted, version of NUMGESS:

94

5 REM -## NUMGESS6 ##-
7 CLS
10 PRINT@106,"-<NUMGESS>-": PRINT@261,

"A NUMBER TRAPPING GAME"
15 COLOR RND(8): PRINT "
20 GOSUB 190
25 PRINT@68, "INSTRUCTIONS:-": PRINT
30 PRINT "YOU WILL HAVE 10 CHANCES TO GET"
35 PRINT "THE NUMBER THAT I'M THINKING OF,
40 PRINT "WHICH IS BETWEEN 1 AND 100."
45 PRINT@324,"HIT 'S' TO START."
50 I$=INKEY$: IF I$<>CHR$(83) THEN 50
55 1-_*LAY=10: SC=20: LI11=100
60 CLS: NUMB=RND(LIM)
65 FOR ROUND=1 TO PLAY
70 	PRINT: PRINT TAB (3>;"THIS IS ROUND NUMBER"

;ROUND
75 IF ROUND=PLAY THEN PRINT TAB (3>THIS IS

YOUR LAST CHANCE"
80 PRINT: INPUT " WHAT IS YOUR GUESS";GUEGS
85 IF ROUND=PLAY THEN CLS: GOTO 125
90 IF GUESS<1 OR GUESS>LIM THEN GOSUB 200x

GOTO 70
95 IF GUESS=NUMB THEN GOSUB 245: GOTO 145
100 IF GUESS>NUMB THEN 110
105 	PRINT: PRINT TAB(4);"HIGHER": GOTO 115
110 	PRINT: PRINT TAB(4);" LOWER "
115 	GOSUB 190
120 NEXT ROUND
125 SOUND 9,4: PRINT@192,"SO1:RRY - YOU MISSED

IT. 	IT"," WAS ";NUMB
130 LI M=L IM-10
135 IF LIM<=30 THEN LIM=30
140 GOSUB 225: GOTO 165
145 SC=GC+5
150 PLAY=1=tLAY-2x IF PLAY-:%`=4 THEN PLAY=4
155 LIM=LIM+50

95

160 8O8UB 225
165 PRINT: PRINT TAB (3);"YOUR SCORE IS NOW SC
170 GOSUB 190: IF GUESS=NUMB THEN 60
175 PRINT@256,"WOULD YOU LIKE ANOTHER GAME";
180 INPUT A$: IF 1-.EFT$(A$,1)=CHR$(89) THEN 60
185 PRINT: PRINT TAB(5);"VERY WELL. GOODBYE."

: END
190 	REM — DELAY SUBROUTINE --
195 FOR DELAY=() TO 999+RND(299)x NEXT DELAY:

CLS: RETURN
200 REM — SCOLD SUBROUTINE —
205 CLS: SOUND 1,5o PRINT@l66,"GTICK TO THE

RULES!"
210 PRINT: PRINT "THAT ENTRY IS UNACCEPTABLE.

YOUR";
215 PRINT "INPUT SHOULD HAVE BEEN BETWEEN

1AND";LIM
220 PRINT: PRINT TAB(4);"TRY AGAIN.":

GOSUB 190: RETURN
225 	REM — SITUATION SUBROUTINE_—
230 PRINT: PRINT TAB(2);"YOUR NEXT GAME WILL

HAVE";PLAY
235 PRINT TAB(2);"ROUNDS, AND THE LIMIT

WILL BE"" ";LIM
240 GOSUB 190: RETURN
245 	REM ---WIN SUBROUTINE —
250 FOR WIN=0 TO 5: CLS: SOUND 31,1:

PRINT@RND(492),"CON8RATS!"
255 NEXT WIN
260 PRINT@64," THAT` S IT! YOU'VE WON A",

"FREE GAME!": RETURN

As you can 000 from what we've done to NUMUSS in
this chapter, any program can be changed and
ds»eLspad. If you see s program in a book or
magazine and think you'd Like to have it running

96

on your own computer, by all means enter it. But
don't stop there.

There is always something which can be added to a
program to make it more interesting to run. This
does not apply only to games programs. You might
like to work on some of the other programs in this
book, or even continue to work on NUMGESS, putting
into practice the ideas outlined in this chapter.

97

98

Chapter Twelve - Getting Listed
An array is used when you want to create a list of
items, and refer to the item by just mentioning the
position within the list the item occupies. You set

up an array by using the command DIM (for

dimension). If you type in DIM A(20), the computer
will set up a list in its memory called A, and will
save space for twenty—one items: A(0), A(1),
A(2)...and so on....up to A(20). Each of these items
-- the A(7) and the rest -- are called elements of
the array.

When you dimension, or set up , an array, the
computer creates the list in its memory and then
fills every item in that list with a zero. So if
you told your computer to PRINT A(3) it would print
a O. You fill the items in an array with a statement
like A(2) = 1000, or by using READ and DATA as we
saw in chapter ten. Once you've given an element a
value, you can get the computer to tell you what
value the element has by saying PRINT A(n). You can
also manipulate the element as though it was the
number. That is, A(4)*6 is valid, as is 45 — A(6)
and so on.

The computer wilt let you use an array of up to 11
elements (that is A(0) through to A(10)) without
having to use the DIM statement first. The moment it
comes across a reference to an element of an array,
where the subscript (the number which follows in
parentheses) is between 0 and 10, it automatically
creates an array. However, it is good practice to
always dimension arrays, even if you are using less
than 12 elements.

You may like to 'forget' about the element which has

99

the subscript zero, and pretend that the array
starts at one. Many times you'll find it simpler to
assume DIM A(80) gives you an array of 80 elements
(rather than 81 as is the case), and that the first
element is A(1) rather than A(0).

The first program in this chapter dimensions (sets
up, or creates) an array called A with room for
sixteen elements. We will ignore the element with
the subscript 0. The B loop, from lines 15 to 25,
fills the array with random digits between 1 and 9,
and then prints them back for you with the loop from
30 to 45 (with a slight pause being created by line
40).

Here is the listing:

5 REM — ARRAYS —
7 CLS
10 DIM A(I5)
15 FOR B=1 TO 15
20 LET A(B)=RND(9)
25 NEXT B
7.0 FOR Z=I TO 15
35 PRINT TAB(4);"A(";Z;") IS ";A(Z)
40 FOR D=0 TO 499: NEXT D
45 NEXT Z

And here's one example of it in use:

A; 2) IS 1
A(3) IS 2
A(4) IS
A(5) IS 8
A(6) IS 5
A (7) IS 7,

100

A(8) IS 7
A(9) IS 9
A(10) IS 1
A(11) IS 2
A(12) IS 6
A(13) IS 7
i 14) IS 2
A(15) IS

This is called a one—dimensional array, because a
single digit follows the letter or name which Labels
the array.

You can also have multi—dimensional arrays, in which
more than one number f011ows the array label after
DIM. In our next program, for example, the computer
sets up a two—dimensional array called A again,
consisting of five elements by five elements (that
is, it is dimensioned by DIM A(4,4) as you can see
in line 10):

5 REM — MULTARRAY
7 CLS
10 DIM A(4,4)
15 FOR B=1 TO 4: FOR C=1 TO 4
20 LET A(B,C)=RND(9)
25 NEXT C: NEXT B
30 COLOR 8: PRINT " 	1 2 3 4"

: PRINT TAB(3);"############"
35 FOR B=1 TO 4: PRINT B;"*";
40 FOR C=1 TO 4: PRINT A(B,C);
45 NEXT C: PRINT: NEXT B

When you run it, you'll see something like this:

101

1 2 3 4
############

1#1 1 9 4
2#9 3 2 5
3#3 6 1 2
4#6 7 8 9

You specify the sLemont of e two—d1menoioneL array
by referring to both its numbers, so the aLemsnt 1,1
of this array (the sLement in the top Left hand
corner of the printout above) is 8 and is referred
to as A(1,1). The 8 in the printout is A[4,3], and
the B next to it is A[4,4].

Your computer sLao supports string arroyo, Enter
and run the foLiowinQ short program to see string
arrays in operation:

5 REM — STRING ARRAY —
7 CLG
10 DIM A$(5)
15 FOR B=1 TO 5
20 LET 0$(B)=CHR$(RN1)(26)+65)+CHR$(RND(26)+65)
25 NEXT B: PRINT
30 FOR B=1 TO 5
35 PRINT TAB (4) " "Ali (";B;") IS Ali (B)
40 NEXT B

Here's one printout of the program:

A$(1) IS R[
A$(2) IS WN
A$(3) IS [O
A$(4) IS QI
A$(5) IS UG

102

You can, of course, fill the elements of an array --
string or numeric -- via DATA or INPUT statements.
Here is a string array which is filled by a DATA
statement:

5 REM — DATARRAY
CLS

10 DIM A$(5)
15 FOR B=1 TO 5
20 READ A$(B)
25 NEXT B: PRINT
30 FOR B=1 TO 5
7;5 PRINT TAB(3);"A$(";B;") IS ";A$ (B)
40 NEXT B
45 DATA COMPUTING,IS,A,FUN,HOBBY

This is the result of running it:

A$(.1) IS COMPUTING
A$(2) IS IS
A$(3) IS A
A$(4) IS FUN
A$(5) IS HOBBY

ESCAPE FROM MURKY MARSH

The next program demonstrates the use of a two—
dimensional array for 'holding' an object, and for
moving it around within the array. The
shape is trapped in a murky marsh, and by moving
totally at random, it hopes one day to be able to
escape from the marsh. The shape is free if it man—
ages to stumble onto the outer rows.

(By the way, the shape in this program demonstrates
Brownian motion, the random movement shown by such

103

things as tiny perticioe in a drop of water when
viewed under e microscope, or of e ofngLa atom of
Qee in a cLoosd container. Brownian motion mxpLaime
why a drop of ink QraduoLLy mixes into the watmr
into which it has been pLecsd,]

Here is the program Listing:

5 REM — MURKY MARSH —
7 C L S
10 DIM A(10,10)
15 LET M=0
20 GOSUB 130
25 FOR W=0 TO 99: IF Q>9 OR P>9 THEN GOTO 125
30 IF RND(0)>.35 THEN LET P=P+1 ELSE LET P=P-1
35 IF RND(0)>.35 THEN LET Q=Q+1 ELSE LET Q=Q-1
40 IF Q<1 THEN LET Q=1
45 IF Q>10 THEN LET 0=10
50 IF P<1 THEN LET P=1
55 IF P>10 THEN LET P=10
60 LET M=M+1
65 1-- RINT@(32*3+1),"ATTEMPT# M;"
70 LET A(P,0)=94
75 PRINT@(32*7+20),
80 FOR X=1 TO 10
85 FOR Y=1 TO 10
90 PRINT CHR$(A(X,Y));"
95 NEXT Y
100 PRINT: PRINT TAB(20);
105 SOUND 1+INT(X/5)*Y,1
110 NEXT X
115 LET A(P,Q)=94
120 CLS: NEXT W
125 GOTO 165
130 REM ARRAY ORDER SUBROUTINE
135 LET Q=RND(3)+4
140 LET P=RND(3)+4

104

145 FOR X=1 TO 10
150 FOR Y=1 TO 10
155 LET A(X,Y)=254
160 NEXT Y,X: RETURN
165 PRINT: PRINT TAB (5);"WHEW - FREE AT LAST!"

105

106

Chapter Thirteen - Graphic Modes

Your computer can produce some very effective
displays, using the different modes and colors.

THE MOVES

As you know, your computer can operate in two
display ways, called modes. The first mode, and the
one most frequently used, is mode 0, which is pre—
dominately a text mode. The computer is in this
mode when it is first turned on.

You can use numbers, letters and the onboard
'chunky' graphics in mode 0. This mode has a
resolution of 32 by 16. That is, the screen can fit
32 characters across and 16 down, as if it was
divided into 512 Little rectangles, each of which
can only hold one character. Using the chunky
graphics gives you the effect of slightly higher
resolution (64 by 32).

The second mode, mode 1, is the high resolution
graphics mode. Very fine individual points can be
printed on the screen to create very clear pictures.
You cannot, however, print text in this mode.

The resolution in this mode is 128 by 64; that's 128
points across and 64 down. The co—ordinates of these
dots begin in the top Left hand corner of the
screen (at co—ordinates 0,0).

USING COLOR

You can use color in both modes. The background
screen color can be green or orange. As you know,

107

the screen is green when the computer is first
turned on, but it can be change to orange as
follows:

COLOR ,1

To turn the screen green again, without turning the
unit off, enter this:

COLOR,0

There are eight colors which can be used in both
modes. In mode 0, these colors can only be used on
any one of the onboard graphics characters. High
resolution color is slightly different from that
used in mode O. You have to assign a color to the
plotted points, or they won't show up.

The high resolution background colors are green and
grey. You need to use two numbers, as well as the
two co—ordinates, to assign a color to a pixel
(which is what a high resolution point is called).

Try this:

10 MODE(1): COLOR 7,1: SET(100,5(:): GOTO 10

The SET function assigns the co—ordinates for a
point. SET is below the H key. Two numbers, or
variables, allow SET to plot a point at the co—
ordinates given. RESET clears these points from the
screen.

Finally, in this brief chapter, you might Like to
try the following programs to see the two modes in

108

action. As you can ess the first one, for mode 0,
uses pRINT@ to position the coLored biobo, wh1ie the
second program uses SET,

5 REM — TEXT RES DEMO —
10 COLOR,1
15 INPUT "WHAT'S YOUR NAME";N$x CLS
20 COLOR RND(8)
25 PRINT@RND(512)—(LEN(N$)+2),(CHR$

141);N$;(CHR$ 142)
30 FOR D=0 TO 299: NEXT D
35 CL GOTO 20

5 REM — HI R S DEMO —
10 INPUT "WHAT'S THE BACKGROUND

COLOR (0,1)";B
12 IF B<0 OR B>1 THEN 10
15 INPUT "WHAT'S THE PIXEL COLOR (1-8)";P: CLS
17 IF P<1 OR P>8 THEN 15
20 MODE(1)
25 FOR X=0 TO 99
30 COLOR P., B: SET (RND(127),RND(63))
35 FOR D=0 TO 99: NEXT D
40 NEXT X
45 RUN

That brings us to the end of the book. We hops
you've enjoyed Learning about the use of ym/r
computer, and are now ready to continue on your own.
Good programming,

109

Appendix - Glossary of Computer Words

Address — a number which refers to a location, gene—
rally in the computer's memory, where information is
stored

Algorithm — the sequence of steps used to solve a
problem

Alphanumeric — generally used to describe a key—
board, and signifying that the keyboard has alphabe—
tical and numerical keys. A numeric keypad, by con—
trast, only has keys for the digits one to nine,
with some additional keys for arithmetic operations,
much like a calculator

APL — this stands for Automatic Programming Lan—
guage, a language developed by Iverson in the early
1960s, which supports a large set of operators and
data structures.

Application software — these are programs which are
tailored for a specific task, such as word
processing, or to handle mailing lists

ASCII — stands for American Standard Code for Infor—
mation Exchange. This is an almost universal code
for letters, numbers and symbols, which has a number
between 0 and 255 assigned to each of these, such as
65 for the letter A

Assembler — this is a program which converts another
program written in an assembly language (which is a
computer program in which a single instruction, such
as ADD, converts into a single instruction for the
computer) into the language the computer uses direc—
tly

110

BASIC — stands for Beginner's All—purpose Symbolic
Instruction Code, the most common language used on
microcomputers. It is easy to learn, with many of
its statements being very close to English

Baud — a measure of the speed of transfer of data.
It generally stands for the number of bits (discrete
units of information) per second

Benchmark — a test which is used to measure some
aspect of the performance of a computer, which can be
compared to the result of running a similar test on
a different computer

Binary — a system of counting in which there are
only two symbols, 0 and 1 (as opposed to the
ordinary decimal system, in which there are ten
symbols, 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9). Your
computer 'thinks' in binary

Bit — an abbreviation for 'binary digit', a bit is
the smallest unit a computer handles. It may have a
value of 0 or 1.

Boolean Algebra — the algebra of decision—making and
logic, developed by English mathematician George
Boole, and at the heart of your computer's ability
to make decisions

Bootstrap — a program, run into the computer when it
is first turned on, which puts the computer into the
state where it can accept and understand other prog—
rams

Buffer — a storage mechanism which holds input from
a device such as keyboard, then releases it at a
rate which the computer dictates

111

Bug — an error in a program

Bus — a group of electrical connections used to link
a computer with an ancillary device, or another
computer

Byte — the smallest group of bits (see bit) which
makes up a computer word. Generally a computer is
descibed as being 'eight bit' or '16 bit', meaning
the word consists of a combination of eight or
sixteen zeros or ones

Central Processing Unit (CPU) — the heart of the
computer, where arithmetic, logic and control func—
tions are carried out

Character code — the number in ASCII (see ASCII)
which refers to a particular symbol, such as 32 for
a space and 65 for the letter 'A'

COBOL — stands for Common Business Orientated Lan—
guage, a standard programming language, close to
English, which is used primarily for business

Compiler — a program which translates a program
written in a high Level (human—like) language into a
machine language which the computer understands
directly

Concatenate — to add (adding two strings together is
known as 'concatenation')

CP/M — stands for Control Program/Microcomputer, an
almost universal disk operating system developed and
marketing by Digital Research, Pacific Grove,
California

112

Data — a general term for information processed by a
computer

Database — a collection of data, organised to permit
rapid access by computer

Debug — to remove bugs (errors) from a program

Disk — a magnetic storage medium (further described
as a 'hard disk', 'floppy disk' or even 'floppy')
used to store computer information and programs. The
disks resemble, to a limited extent, 45 rpm sound
records, and are generally eight, five and a quar—
ter, or three inches in diameter. Smaller 'micro—
disks' are also available for some systems

Documentation — the written instructions and expla—
nations which accompany a program

DOS — stands for Disk Operating System (and general—
ly pronounced 'doss'), the versatile program which
allows a computer to control a disk system

Dot—matrix printer — a printer which forms the let—
ters and symbols by a collection of dots, usually on
an eight by eight, or seven by five, grid

Double—density — adjective used to describe disks
when recorded using a special technique which, as
the name suggests, doubles the amount of storage the
disk can provide

Dynamic memory — computer memory which requires
constant recharging to retain its contents

113

EPROM — stands for Erasable Programmable Read Only
Memory, a device which contains computer information
in a semi—permanent form, demanding sustained expo—
sure to ultra—violet light to erase its contents

Error messages — information from the computer to
the user, sometimes consisting only of numbers or a
few Letters, but generally of a phrase (such as 'Out
of memory') which points out a programming or opera—
tional error which has caused the computer to halt
program executions

Field — A collection of characters which form a
distinct group, such as an indentifying code, a name
or a date; a field is generally part of a record

File — A group of related records which are proces—
sed together, such as an inventory file or a student
file

Firmware — The solid components of a computer system
are often called the 'hardware', the programs, in
machine—readabLe form on disk or cassette, are
called the 'software', and programs which are hard—
wired into a circuit, are called 'firmware'. Firm—
ware can be altered, to a limited extent, by soft—
ware in some circumstances

Flag — this is an indicator within a program, with
the 'state of the flag' (i.e. the value it holds)
giving information regarding a particular condition

Floppy disk — see disk

Flowchart — a written layout of program structure
and flow, using various shapes, such as a rectangle

114

with sloping sides for a computer action, and a
diamond for a computer decision, is called a flow
chart. A flowchart is generally written before any
lines of program are entered into the computer

FORTRAN — a high level computer language, generally
used for scientific work (from FORmula TRANslation)

Gate — a computer 'component' which makes decisions,
allowing the circuit to flow in one direction or
another, depending on the conditions to be satisfied

GIGO — acronym for 'Garbage In Garbage Out',
suggesting that if rubbish or wrong data is fed into
a computer, the result of its processing of such
data (the output) must also be rubbish

Global — a set of conditions which effects the
entire program is called 'global', as opposed to
'local'

Graphics — a term for any output of computer which
is not alphanumeric, or symbolic

Hard copy — information dumped to paper by a printer

Hardware — the solid parts of the computer (see
'software' and 'firmware')

Hexadecimal — a counting system much beloved by
machine code programmers because it is closely
related to the number storage methods used by
computers, based on the number 16 as opposed to our
'ordinary' number system which is based on 10)

Hex pad — a keyboard, somewhat like a calculator,

115

which is used for direct entry of hexadecimal
numbers

High—Level languages — programming languages which
are close to English. Low—level languages are closer
to those which the computer understands. Because
high—Level languages have to be compiled into a form
which the computer can understand before they are
processed, high—level languages run more slowly than
do their low—level counterparts

Input — any information which is fed into a program
during execution

I/O — stands for Input/Output port, a device the
computer uses to communicate with the outside world

Instruction — an element of programming code, which
tells the computer to carry out a specific task. An
instruction in assembler language, for example, is
ADD which (as you've probably guessed) tells the
computer to carry out an addition

Interpreter — converts the high—level ('human—under—
standabLe') program into a form which the computer
can understand

Joystick — an analog device which feeds signal into
a computer which is related to the position which
the joystick is occupying; generally used in games
programs

Kilobyte — the unit of memory measurement; one
kilobyte (generally abbreviated as K) equals 1024
bytes

116

Line printer — a printer which prints a complete
Line of characters at one time

Low—level language — a Language which is close to
that used within the computer (see high—level
language)

Machine language — the step below a low—level Lan—
guage; the language which the computer understands
directly

Mainframe — the term for 'giant' computers;
computers are also classed as minicomputer and
microcomputer (such as the computer you own)

Memory — the device or devices used by a computer to
hold information and programs being currently
processed, and for the instruction set fixed within
a computer which tells it how to carry out the
demands of the program. There are basically two
types of memory (see RAM and ROM)

Microprocessor — the 'chip' which lies at the heart
of your computer. This does the 'thinking'

Modem •- stands for MOdulator/DEModulator, and is a
device which allows one computer to communicate with
another via the telephone

Monitor — (a) a dedicated television—screen for use
as a computer display unit, contains no tuning
apparatus; (b) the information within a computer
which enables it to understand and execute program
instructions

Motherboard — a unit, generally external, which has

117

slots to allow additional 'boards' (circuits) to be
plugged into the computer to provide facilities
(such as high—resolution graphics, or 'robot con—
trol') which are not provided with the standard
machine

Mouse — a control unit, slightly smaller than a box
of cigarettes, which is rolled over the desk, moving
an on—screen cursor in parallel to select options
and make decisions within a program. 'Mouses' work
either by sensing the action of their wheels, or by
reading a grid pattern on the surface upon which
they are moved

Network — a group of computers working in tandem

Numeric 	pad — a device primarily for entering
numeric information into a computer, similar to a
calculator

Octal — a numbering system based on eight (using the
digits 0, 1, 2, 3, 4, 5, 6 and 7)

On—line — device which is under the direct control
of the computer

Operating system — this is the 'big boss' program or
series of programs within the computer which con—
trols the computer's operation, doing such things as
calling up routines when they are needed and assign—
ing prioritories

Output — any data produced by the computer white it
is processing, whether this data is displayed on the
screen or dumped to the printer, or is used
internally

118

Pascal — a high level language, developed in the
late 1960s by Niklaus Wirth, which encourages disci—
plined, structured programming

Port — an output or input 'hole' in the computer,
through which data is transferred

Program — the series of instructions which the com—
puter follows to carry out a predetermined task

PILOT — a high level language, generally used to

develop computer programs for education

RAM — stands for Random Access Memory, and is the
memory on board the computer which holds the current
program. The contents of RAM can be changed, while
the contents of ROM (Read Only Memory) cannot be
changed under software control

Real—time — when a computer event is progressing in
line with time in the 'real world', the event is
said to be occurring in real time. An example would
be a program which showed the development of a
colony of bacteria which developed at the same rate
that such a real colony would develop. Many games,
which require reactions in real time, have been
developed. Most 'arcade action' programs occur in
real time

Refresh — The contents of dynamic memories (see
memory) must receive periodic bursts of power in
order for them to maintain their contents. The sig—
nal which 'reminds' the memory of its contents is
called the refresh signal

Register — a location in computer memory which holds
data

119

Reset — a signal which returns the computer to the
point it was in when first turned on

ROM — see RAM

RS-232 — a standard serial interface (defined by the
Electronic Industries Association) which connects a
modem and associated terminal equipment to a
computer

S-100 bus — this is also a standard interface (see
RS-232) made up of 100 parallel common communication
Lines which are used to connect circuit boards
within micro—computers

SNOBOL — a high level language, developed by Bell
Laboratories, which uses pattern recognition and
string manipulation

Software — the program which the computer follows
(see firmware)

Stack — the end point of a series of events which
are accessed on a Last in, first out basis

Subroutine — a block of code, or program, which is
called up a number of times within another program

Syntax — as in human Languages, the syntax is the
structure rules which govern the use of a computer
Language

Systems software — sections of code which carry out
administrative tasks, or assist with the writing of
other programs, but which are not actually used to
carry out the computer's final task

120

Thermal printer — a device which prints the output

from the computer on heat—sensitive paper. Although
thermal printers are quieter than other printers,

the output is not always easy to read, nor is the

used paper easy to store

Time—sharing — this term is used to refer to a large

number of users, on independent terminals, making

use of a single computer, which divides its time

between the users in such a way.that each of them

appears to have the 'full attention' of the computer

Turnkey system — a computer system (generally for
business usel which is ready to run when delivered,

needing only the 'turn of a key' to get it working

Volatile memory — a memory device which loses its
contents when the power supply is cut off (see
memory, refresh, ROM and RAM)

Word processor — a dedicated computer (or a computer

operating a word processing program] which gives

access to an 'intelligent typewriter' with a large
range of correction and adjustment features

121

If you've never programmed a computer before, and
you want to be able to program your new Dick Smith
VZ200 in just a few hours, then this book is

certainly for you.

Written by VZ200 Users' Club co—ordinator Tim
Hartnell, and experienced VZ programmer Neville
Predebon, the book assumes no prior knowledge of
computer programming. However, in just a few hours,
you'll be writing worthwhile programs of your own.

From mastering the keyboard, through games playing,
to making effective use of the graphics, you'll find

it all here, just waiting to help you.

For a start, you'll learn just how few commands are
needed to work your new VZ200. Your computer will. be
up and running — under your control — in Less than a
minute after you start reading the first page of

chapter one.

ISBN 0 949772 21 6
Dick Smith catalogue number B 7206

DICK SMITH ELECTRONICS
(02)888-3200

3 2 U
9 5 t

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134

