A Beginner s Guide

to the

EDITOR ASSEMBLER

Compl led by

P.C. Schaper

DALTON SCUNT STRVICE
21 AGNES ST., TOOWONG 4066

PHONE 871 3707

D~ W

10
10
11
11
12
12
13
13
13
14
16
16
17
17
18
19
19
20
20
20
20
20
20
21
21
21
22
23
24
25
25
26
27
28
29
30
32
32
33
33
34
35
36
45

i.
it - xi

Page 1.

References
Introduction
Computer Programming Languages
Microprocessor Architecture
280 Architecture - Z80 CPU Reaister Set
How to Use the VZ Editor Assembler
Some Things You Need to Know About This Editor Assembler
Status Line (top Line of Screen)
Interpretation of Numbers
Arithmetic Operations
Line Format
Proaram Lines
Comment Lines
Command Lines
Message Lines
Assembly and Listing Options
Commands Avaijlable in the VZ Editor Assembler
Text Entry and Displav Commands
Insert
Edit
Delete
List
Find
Tape commands
Tape Save
Tape Load
Tape Verify
Tape Merge
Tape Cbject
Special Purpose Commands
Set Oriain
Assemble
Run
Set Parameters
Summary of Commands
Opcodes Recognised by This Assembler
Program Control Operations
Conditions (for proaram control)
Data Transfer Operations
Block Data Transfer and Search Operations
Input/Output Operations
Arithmetic and Loaic Operations
Rotate and Shift Operations
Bit Operations
Stack and Stack Pointer Operations
Interrupt and Machine control Operations
Pseudo-Operations
Summary of Opcodes and Types of Operations
Starter Programs
Finally ...

Quick Reference Section - Contents Page.
Quick Reference Section.

Page 2.

References Used in the Compilation of this Guide,

¥2200/300 Reference Manuals.

2200 Editor Assembler Instruction Manuai, Dick Smith (Electronics).
Y2300 Main Unit Mapual, 1983, Video Technology Ltd.

vZ2300 Techn] , 1985, Dick Smith Management Pty Ltd.

Other References.

Borden, W. Jr., 1978, The 2B0 Microcomputer Handbook, Howard W. Sams & Co. Inc.,

Indianapolis.

Barwood, M.. (Ed.), V2 User, (A user group "magazine®).

Mitchell, C., 1985, Electronics Notebook 3, Talkinag Electronics, Cheltenham, Vic.

Tootill, A., and Barrow, D., 1983, 280 Machine Code for Humans, Granada, London.

Watts, L., and Wharton, M., 1983, Machine Code For Beginners, Usborne Publishing
Ltd., London.

Zaks, Rodney, 1980, Progarammipng the Z80 (second edition), Sybex Inc., USA

#%* Use the remaining space on this page to list any other references you find
useful.

Page 3.

UCTION

This auide refers to the Dick Smith VZ-200 Editor Assembler V.1.2 written by
Dubois and McNamara.

The instruction manual supplied with the VZ Editor Assembler, althouah adequate
for those experienced in assembly lancuace programming. is less than ideal for
the beaginner. The VZ however is a very good beainner’s computer because of its
low cost and the qenuine computing capabilities it offers. This quide therefore
Is intended as an introduction to assembly lanauage programming on the V2200 or
VZ300 computer for those who are using a VZ to learn about computers and/or
comput ing.

This quide is based closely on the original instruction manual supplied with the
VZ Editor Assembler. but the oriainal material has been expanded and rearranged
to make it more comprehensive and easier to refer to while workina. Nonetheless
this is still Intended only as a auide to the VZ Editor Assembler rather than as
a textbook on assembly languaae programing and those whose interest is aroused
will need to refer also to one or more of the detailed references availabie.
several of which are listed on the following page.

A more detailed section on Opcodes has been provided because of the difficulty a
beginner can have in understanding the standard tables of opcodes. The Opcodes
have been arranged topically as far as is possible to make it easier for a
beainner to locate the Opcode that will do what he is trying to do. something
which is not achieved with an alphabetical listina. Special acknowledament is
appropriate here to Collin Mitchell, whose "Machine Codes Explained" in his
Electronics Notebook 3 has been invaluable in the preparation of these notes.

The emphasis throughout is intended to be on the “"what" of programming rather
than the "how", i.e. what to do to make something happen, rather than delving
into the theory of how the computer works. Some theory is unaveldable though,
and those who wish to go further will find themselves going into the nesessary
theory as they progress. In the meantime this manual tries to keep the theory
down to the unavoidable minimum.

The exampies of programs should be of particular value to the beginner as in
practice many people learn programming by starting with those written by other
people rather than from a study of the computer and programming theory. The
programs provided here may also be used as a foundation for a library of program
‘routines’ that can be incorporated into longer and more complex programs. Such
a library is strongly recommended in that it avoids the need to re-invent every
procedure every time it is needed. My onily apology here is that limitations of
time and experience prevent me from myself offering a more complete library of
program routines.

This guide includes the new Delete command and the three new List commands that
have been added to the Editor Assembler since the original (Dick Smith) manual
was written.

Page 4.

COMPUTER PROGRAMMING LANGUAGES

The programming language Installed in the V2200 and V2300 computers is BASIC.
BASIC is a high level language. Thls means that It is a language which is
reasonably easy for people to use because it uses words and structures that are
easily understood. The BASIC programmer actually needs little knowledge of the
workings of a computer in order to be able to write useful programs. BASIC
however is an interpretive language, which makes it very slow. In many programs
this is not even notlced, as the computer using basic is stil] very much faster
than the person using the computer, but as programs become longer and more
complicated the delays can become noticeable, particularly in programs using a
lot of graphics displays., long calculations, or long searches.

One way to overcome thls disadvantage Is to use a lower level language. These
work more directly with the computer and sc are less subiect to the delays that
can occur in BASIC. They can also provide a areater flexibility in other
respects and are much more efficlent in the use of memory space than the higher
level languages. For these reasons the lower level lanquages still remain
pcpular with many computer users, though as memory capacity and computer speeds
increase they may tend to become less popular than in the past. However while
computers like the VZ remain available the lower level languages are sure to
remain popular.

The lowest level lanauage is machine code. This is the lanquage that
communicates most directly with the computer and is In fact the only lancuage the
computer understands, but it has the disadvantage that it is very difficult for
people to understand. A machine code ls simply a series of numbers which the
computer recoanises and which can therefore be used to instruct the computer to
do certain things. However even one incorrect number In the series will “crash"
the program, i.e. cause It to fall to operate properly. Because of the
difficuities for humans trying to write machine code the hicher level lanaguages
were developed, to "translate' somethling approxlmatlng human language into the
machine code understood by the computer.

Assembly language is a second level language, i.e. the first level above machine
code. It accepts very simple instructions called “mnemonics" and converts them
Into the machine code required by the computer. This is much easier than using
machine code, but not as easy as using a thirad level language. The proarammer
using BASIC or another thlird level language does not have to worry about the
detalled steps the microprocessor takes to perform an operation because the
Interpreter, or the compiler in some other languages, will accept his *"general"
Instruction and supply all the steps needed to teil the computer what to do. The
agsembler will not do this so the assembly language programmer must tell the
computer exactly what he wants it to do, including each and every step of the
process, therefore to use |t some knowledae of how the computer works is
required. However once the necessary knowledge has been gained and one’s
programming expertise developed assembly)anguage programming of fers power and
speed far beyond that obtainable with most third level languages, particularly
for small! computers such as the VZ.

Page 5.

The complexity of a computer is not in what it can do but in how many times and
how fast it can do something. For example, a computer cannot multipiy or divide.
but it can add and subtract, and it can count. Therefore to make it multiply we
simply tell it to start at zero and add a number, then add the number again, and
again, etc., until it has done 80 the required number of times. The cumulative
total of these additions can then be read out as the result of the
multiplication. Division similarly is accomplished by counting the number of
successive subtractions required to reach zero. Using BASIC, or any other third
level lanauage. the proarammer does not have to think about this because the
interpreter (or compiler) includes routines which tell the computer how to
multiply, dlvide, etc. when the appropriate instruction is entered, but when
using assembier language the programmer must know exactly what the computer can
and cannot do and tell it precisely what he wants it to do. However despite the
apparent difficulty this is actually made quite easy by the use of the mnemonics,
or opcodes, used in the assembly language. The use of these opcodes with the
Editor Assembler makes it a fairly easy process to instruct the computer what to
do, even though every procedure must be entered in very small steps.

The V2200 and V2300 computers use Zilog mnemonics. These are used because the V2
computers use a 2ilog 280 microprocessor. The actual opcodes recognised by the
assembler are found in Appendix A of the original Editor Assembly instruction
manual (p10) and can also be found in any 280 manual or reference book. The set
of opcodes recognized by the V2 assembler appears to be standard Z80 but if any
trouble is encountered when using an opcode listed in another source check that
is is in fact one that is recognised by the VZ assembler. The pseudo-operation
DEFM, for example, is not supported in the VZ assembler.

Assembly language is a compiled language rather than an interpreted language like
BASIC. An interpreted language reads and translates the instructions line by
line as it runs, which is one reason BASIC is so slow to run compared with other
higher level languages such as C-Basic and Pascal, which are compiler lanaguages.
A compiler lanouage must be compiled, or assembled, before it can run. When it
is compiled, i.e. assembled, it is changed from the language in which it was
written, known as the source code, into machine language, or object code. This
must be done before the program can be run. Once compiled the program runs very
auickly, as it does not have to wait for each line to be translated as do
interpretive ianguages. It is also very efficient in use of memory space at run
time as once assembled it can be run without further reference to the source code
or the language it was written in, therefore these do not need to be present in
the computer at run time.

Because the program written in the higher level language is called the "source
code" and the machine language program that results after compilation or assembly
is known as the "“object code' a program written in Assembly language [s a source
code, while the program that results after assembly is the obiject code.

K

e commencing to write in assembly language is is nesessary to have some
grstanding of the "architecture" of the microprocessor chip being used, in

#is case the 280. Fundamentally the microprocessor consists of several storage
Breas called "registers” which can be used to store information in a numeric
form. If you are entirely unfamiliar with digital electronics it might be useful
to glance through an introductory reference now before continuing, as sooner or
later you will need some understanding if you continue with assembly programming,
but to start with the recognition that the registers are basically storage areas
|s probably all that is essential.

These registers can have "data* put into them or removed, and in the case of the
register known as the "accumulator* can have data added to or subtracted from the
existing contents. There are several other special purpose registers also, such
as the flag and index registers and the stack pointer and program counter, but
fundamentally these still are simply storage places for certain information which
can then be obtained when required.

Althouah it could not function, or certainiy not very well, without the other
registers there Is no agoubt that the accumulator, the “A" register in the 280, is
the most important. This is because the A register does most of the actual work
of the computer, e.g. adding, subtracting, comparing, though some operations can
be carried out in some of the other registers when necessary. The 280 in fact
offers several features not always found in "B bit* microprocessors and because
of this 1s regarded by many people as the "best" all round 8 bit microprocessor,
and you should discover as you progress that the flexibility offered by the
features available is very useful.

N.B. Registers B& C, D& E, and B & L in the Z80 can be used separately or as
pairs, l.e. as two 8 bit registers or as a single 16 bit register. When these
registers are used as pairs B and C are the high and low bytes respectively, and
gimilarly with D & E and H & L. H/L = High/Low is a convenient way to remember
the byte order.

Until you become very familiar with the 280 and what it can do you will probably
find it useful to keep a copy of the diaagram of the register set handy while you
work. You should also have handy a list of the opcodes, preferably with
explanations. Your first programs will be very fundamental, and probably wont
seem to do much, but as you get the feel for what you can do in Assembler
language you will begin to realise the power and advantages it offers.

Page 7.

280 ARCHITECTURE

280 CPU REGISTER SET Z80 ARCHITECTURE 280 CPU REGISTER SET Z80

| | i | | |
I A | F | } I |
| | | | A’ I F |
i Acc. I Flags | | | |
| e | fommm e |
| B | C | | | i
| | | | | |
I DJNZ & | 170 & I | B’ ! c i
| General | General | | | |
| Use I Use | | I }
fmm e e] e et L L L L I
| D | E | i | i
| I]] D | E’ |
| General | General | i | |
| Use | Use | i I !
R il L L DL L L L | R il L Ll L Lt J
H | L
I
L/

|
General Use

8

0]

YA

8

0

2

8

0

y/

8

0

Y/

8

0

VA

8

0

Y/

8] | |

0 |] |

2 i Main Register Pair | | H’
8 t | |
0 { | |
2 fmmmm e e] [
8
0
2
8
0
2
B
0
V4
B
0
Z
8
0
Zz
8
0
Z
8
0
2
8
0
2

| i Alternate Set

! Index Register | |
e e - | |--- Interfaces to ----

l

{
] sp I |]
| I i Computer Memory |
| Stack Pointer | | (ROM and RAM)]
e | | |
| PC I |- and to —--==-—-- |
] i

/
8
0
Z
8
0
/
8
0
V/
B
0
Z
8
0
Z
8
0
Z
8
0
Z
8
0
Z
8
0
Z
8
0
[/
8
e
rA
8
0
4
8
0
Z

|

! Program Counter) | 1/0 Devices
i (e.g. Printer)
i

] | i
] | I
| Refresh | Interrupt |
| I Vector |
| [|

8
0
Z
8
0
A
8
80 CPU REGISTER SET Z80 ARCHITECTURE 280 CPU REGISTER SET 280

280 CPU Register Set.

Page 8.

HOW TO USE THE V2 EDITOR ASSEMBLER

The VZ Editor Assembier has two modes, the Command Mode and the Edit mode. The

Edit mode is used for the actual writing of programs, i.e. to type programs into
the computer from the keyboard. The command mode is uged to enter the Edit mode
and to carry out other functions such as set origin, assemble, save to tape, etc.

To write a program the Editor Assembler must first be loaded into the VZ in the
norma) manner, i.e. by use of the CRUN or CLOAD command from the VZ BASIC. (The
Editor Assembler auto-executes from both commands). When the assembler has been
loaded BASIC is no longer directly accessible as the Editor Assembler now has
control of the computer. At the completion of loading the Editor Assembler will
be in the Command mode, i.e. proograms cannot be written until the Edit mode is
entered.

A typlcal procedure for writing a program is as follows :-
i. Load the Editor Assembler into the VZ using CRUN or CLOAD.

N.B. If you load from the beginning of the tape vou will first see a message
detailing the new commands that have been included in the Editor Assembler.
Allow the tape to keep loading until you see the message identifying the Editor
Agsembler itself and the COMMAND prompt at the bottom of the screen.

2. When loading is complete the COMMAND prompt should appear. Enter I<Return>
(Insert) to begin writing the program. The first unused line number, 001 for a
new program, should appear on the screen.

3. Write the program, i.e. type it into the computer via the keyboard. Some
people do prefer to write out their programs by hand first but the editina
capabilltles of the VZ Editor Assembler make this un-necessary, though it is
convenient to have some scribble paper handy while working.

See the "Line Format" section of this (or the original) manual for the
correct method of entry and a 280 reference manual for full details of the
280 capabilities and opcodes.

I1f the program is to be tested or otherwise run from the Editor Assembler
provision must be made for a return to the Editor Assembler on completion
of the Run by including a jump to 31488 (7BOOH) as an exit from the
program. (See notes under "Set Origin* or “"Run" command descriptions).

It is also useful to make line 001 a Comment line, e.g. Program Name, even
apart from considerations of good documentation, as it is not possible to
insert a line before line | and therefore it can be very inconvenient to
insert a line at the beainning of a program if it has started with a
program line. However because in all but the simplest programs the first
geveral llnes should be comment 1ines for program identification and
explanation it is best to establish good programming habits in this
respect from the begining anyway.

Paae 9.

If a syntax error is made when enterina a program |ine an error message

will be displayed and the error must be corrected to proceed. If the line
has no syntax errors it will be accepted and the next line number will be
displaved.

4. When the proaram is complete check it and edit the source code to remove any

mistakes, e.a. typing errors etc., that remain. ([(The Editor Assembier only
detects "illegal" entries: it can miss many typing errors and cannot detect
mistakes in the proaram sequence itself apart from certain types of mistakes that
may become apparent later during the Assembly process.]

5. Set the Origin to the first free byte after the source file using O<Return>.
i.e. type the letter 0. for Origin, NOT the number zero, then <Return).

The Oriqgin may be set to a particular memory location for practical proarams but
beainners will want to test run their programs so should start by setting the
Origin to the first free byte after the source file. (Setting the origin to any
other memory iocation could result in a program crash and ioss of the program if
the location selected is one already in use or allocated for particular use. A
good knowledae and understanding of the memory map of the computer is required
before the proarammer can select the oriain for himself).

6. Assemble the proaram (A<Return)).

7. Re-Edit to remove any errors detected during assembly (the numbers of |ines
with errors are displayed during assembly) then reset the Origin and re-Assemble
the proaram (as before).

8. Re-Edit etc. again (and again) if necessary until the proaram assembles
without errors. (A printout of the proaram listina can be done at this stage if
required - see Printer Options. N.B. that it can also be convenient to do a
printout at earlier stages so as to have a "hard copy" of the program listing to
work with when de-bugging a program).

9. Unless the program is very short and simple. l.e. easy to type in again. it
should be saved before running (see "Tape Commands", elsewhere in this manual).

10. Finally, when you are sure you have removed all errors. Run the proaram by
typina R<Return> followed by a Y when you are prompted "Are you sure?" (This
check is to ensure that the program is not inadvertently Run before it is ready
as this could result in loss of the proaram). If there are no bugs or other
wrong commands in the proaram it should run as intended and then return control
to the Editor Assembler. If any errors remain the program may “lock up*, i.e. it
may not return control to the Editor Assembler. If a program does lock up the
only way to unlock it is to switch off and re-start the computer, thus losing all
that was in it before the lock up. This is why it is so important to Save every
proaram before a Run ls attempted.

Page 9.

I1f a syntax error is made when entering a proaram |line an error message

will be displayed and the error must be corrected to proceed. If the line
has no syntax errors it will be accepted and the next line number will be
displavyed.

4. When the program is complete check it and edit the source code to remove any

mistakes, e.q. typina errors etc., that remain. [The Editor Assembler only
detects *illecal" entries: it can miss many typling errors and cannot detect
mistakes in the proaram sequence itself apart from certain types of mistakes that
may become apparent later during the Assembl!y process.)

5. Set the Oriain to the first free byte after the source tile using O<Return>.
i.e. type the letter O, for Origin, NOT the number zero, then <KReturn>.

The Origin may be set to a particular memory location for practical proarams but
beaginners will want to test run their programs so should start by setting the
Oriqin to the first free byte after the source file. (Settina the origin to any
other memory location could result in a proaram crash and loss of the program if
the location selected is one already in use or allocated for particular use. A
aood knowledae and understanding of the memory map of the computer is required
before the proarammer can select the origin for himself).

6. Assemble the proaram (A<Return>).

7. Re-Edit to remove any errors detected during assembly (the numbers of lines
with errors are displayed during assembly) then reset the Origin and re-Assemble
the proaram (as before).

8. Re-Edit etc. again (and again) if necessary until the proaram assembles
without errors. (A& printout of the program listina can be done at this stage if
required - see Printer Options. N.B. that it can alsc be convenient to do a
printout at earlier stages so as to have a "hard copy" of the program listing to
work with when de-bugging a proaram).

9. Unless the program is very short and simple, i.e. easy to type in again. it
should be saved before running (see *Tape Commands', elsewhere in this manual).

10. Finally, when you are sure you have removed all errors. Run the proaram by
typing R<Return> followed by a Y when you are prompted "Are you sure?' (This
check is to ensure that the program is not inadvertently Run before it is ready
as this could result in loss of the proaram). [f there are no bugs or other
wrong commands in the program it should run as intended and then return control
to the Editor Assembler. If any errors remain the program may "lock up", i.e. it
may not return control to the Editor Assembler. If a proaram does lock up the
only way to unlock it is to switch off and re-start the computer, thus losing ail
that was in it before the lock up. This is why It is so important to Save every
program before a Run |s attempted.

Page 10,

Some Thinags You Need to Know About This Editor Assembier

The folliowing pages provide information on various things you need to know about
this Editor assembler in order to be able to use it effectively.

STATUS LINE (Top Line on Screen)

The top line on the screen is the Status line and is shown in inverse to the rest
of the screen. It shows the free memory (FM), the currently set origin (ORG),
and the state of the parameters as currently set (SPAR). A number, i, 2, or 3,
indicates the state of parameter N and if A, B, or C is on then this will be
shown by the appropriate letter(s) following the number for N.

For example, if free memory equals 10500, the currently set origin is 32000,
N=2, A=on, B=off, and C = on, then the Status line will read :-

FM=10500 ORG=32000 SPAR=2A C

Whenever there is a hold on a listing (H), a forced halt in an assembly (:H), or
a2 hold on error status situation then the top llne will flash to show you that
the program is waiting for you to press the <C> key.

(Explanation of the Parameters can be found under "Aggembly and Listing Opticns"
and some explanation of these and of the importance of the Origin can be found
under "Commands").

Page 11,

INTERPRETATION OF NUMBERS

The Assembler recoanises both decimal and hexadecimal numbers. All Hex. numbers
must end with the suffix H. and because all numbers must start with a diait to
avoid being interpreted as labels a 0 (zero) must precede any Hex. number that
would normally start with a letter.

Examples :-

100 = 100 in decimal.

1000H 1000 in Hex. (equal to 4096 in decimal).
65535 65535 in decimal.

OFFFFH = FFFF in Hex. (equal to 65535 in decimal?.

Note that in the last example the numeral 0 (zero) has to precede the hexadecimal
number FFFF because it starts with a letter and therefore would not be recognised
by the Editor Assembler as a number without the zero preceedinag it. In the
second example this was not necessary because that hex. number starts with a
numeral.

ARITHMETIC OPERATIONS

The Assembler is capable of performing only addition and subtraction and then
only once in any equation.

Exampies :-
100 + 10
1000H + OAFOH
TES1 + 1245
234 - 12
10 - 2300
1089H - TESi
TES1 + TES2

A1l of the above are leaal with TES1 and TESZ being labels. The following two
examples are NOT lecal because there is more than one operation in each equation

120 + 2300 - 12
TES!1 + 123 + 12

Note that although addition and subtraction are the only arithmetlic operations
directly avallable multiplication and division can be performed by using
sequential addition or subtraction in combination with the counting capabllity of
the microprocessor and ultimately the mathematical capabilities of the computer
are dependent entirely on the, ppogrammer‘s expertise. (See also paragraph 5 of
the section on “Computer Progy)9 Languages*).

Page 12.

LINE FORMAT

In this assembler provislon is made for four types of lines, Program lines,
Comment |ines, Command]lines, and Message |ines.

Prodaram Lipes

The standard program line format consists of a LABEL, an OPCODE, and an OPERAND.
However the label is optional and some opcodes do not require an operand
therefore these two positions are not always occupled, e.qg. :-

001 ABCD LD HL,1234K
002 INC HL
003 NOP

This program is not a practlical example, as the instructions entered have been
chosen simply to show examples of the three alternatives within a program line.
Note that although labels and operands are not always needed an opcode is
esgential In every program line.

In this assembler Comments are not allowed in a normal program |ine.

1f vyou wish to place a label on a line it must occupy the first 1 to 4 places on
the line. It cannot be more than 4 characters long.

No spaces are allowed before a label because if a line begins with a space the
assembler will try to handle the next group of characters as if they were an
opcode, e.g. 004TES! not 004 TES!.

The first character of the Label must be alphabetical while the last 3 may be
alphanumeric. No special characters are allowed (e.g. !"#8$%8).

At least one space must separate the Label and the Opcode.

1f no label! was used the first character in the line must be a space to prevent
the Assembler trying to treat the Opcode as a Label.

The Opcode must have from 1 to .4 characters. The first character must be
alphabetical while the last 3 may be alphanumeric. No special characters are
allowed (e.g. !"#%%8). The Opcode must also be one of the 71 Opcodes recognised
by this Asgsembler if it Is to be accepted at assembly time. These opcodes are
explained briefly in this guide and are also listed in Appendix A (page 10) of
the original manual.

If an Operand ig required then at least one space must be between it and the
Opcode.

No check is done on the Operand but the first space found after the commencement
of the Operand will be taken as the end of the 1ine.

If the Label or the Opcode does not conform to the 1 to 4 character length and
alphabetical or alpha-numerical format then a LINE FORMAT ERROR will be given and
you will be asked to re-enter the line,.

ndr

Page 13,

Comment Lines

Comment lines are used for program documentation, i.e. to include information
about the program that is not actually part of it. If vou use plenty of Comment
lines to explain what your program is actually doing you, and anyone else who
uses it, will find it much easier to debug and modify when necessary. A proaram
that is not explained with plenty of comment lines can be extremely difficult to
read and modify at a later date.

Many assemblers allow comments on the program lines but this is not supported in
the VZ Editor Assembler.

Comments must be on lines by themselves and each Comment line must start with a
semi-colon (;). No space (other than that automatically inserted by the Editor)
is allowed before the semi-colon. E.g. :-

001 :GREAT GAME
002 ;WRITTEN BY G.Bloggs
003 :LAST UPDATE 20/11/86

It is good programming practise for the first several lines always to be comment
lines (see section on "How to Use the VZ Editor Assembler").

Command Lines
Command lines are used to send special! commands to the Assembler during assembly.

A Command must be on a line by itself and the line must start with a colon (:),
No space (other than that automatically inserted by the Editor) is allowed before
the colon. E.g. :-

001 :AC

(This particular command will cause all lines to be listed and will send the
listing to the printer as well as to the screen).

The commands that can be set by the command lines are described under "Assembly
and Listing Options"'.

Message Lines

Messages are text that is to be printed out by the program. This is normally

provided for In Zilog mnemonics by the DEFM Opcode but this is not allowed in the
VZ Editor Assembler.

This is because if the DEFM Opcode was used for defining messages they would be
limited to 18 characters, the maximum length an operand can be, due to the line
entry format of the Editor. While this is long enough for any operand it does
limit messages. Messages longer than 18 characters could be defined with two
DEFM Opcodes and it would be the same thing as far as the finished assembly was
concerned, but to make message handling a little easier a special line indicator

is used for messages. The line indicator used for messages in this Assembier is
the asterisk (#).

pd before the asterisk.

‘max Imum message length Is 27 characters. If more than 27 characters are
ired to complete the message 2 or more message lines will be needed.

; jhe end delimiter for a message is either an asterisk or the first non-space
i “characters working back from the end of the line.

Here are some examples of message lines :-

001 *THIS IS A MESSAGE
002 ¥ THIS IS A MESSAGE ¥
003 #*x THIS IS A MESSAGE #*x

Line 3 will be assembled ¥ THIS IS A MESSAGE %. Only the first and last
asterisks are message delimiters. The others are part of the message.

e.g. -

001 MES1 EQU $
002 *THIS IS A MESSAGE
003 LD HL,MESI

In this example the register pair HL will be loaded with the address of the
memory location that contains the first letter of the message.

ASSEMBLY AND LISTING QPTIONS

Four options can be set for assembly and listing with the Set Parameters command

from the Editor Assembler when in Command mode or by the use of the colon

(Command line) within a program. A fifth, the Halt option, can be used with the §
colon (Comand line) during an assembly. The parameters and their meanings are asjg

follows :-

PARAMETER A. If this Is set ON then the Assembler will list all lines and their

correspondina assembled code. If this is set OFF then only lines with errors
will be listed.

PARAMETER B. I1f this Is set ON then the Assembler will halt on an error and
wait for you to press the <C> key before contlnuing.

] must be on lines by themselves and each message |ine must start with an
k (¥). No space (other than that automatically inserted by the Editor) is

If a label is required for a message then EQU $ (Opcode Operand) must be used,

PARAME
an Ass
[Some -
severa
the be:

PARAMET
hand]es

NO7T
cal
the

HALT Opt
assembly
You pres

N.B. A
may not ¢

Here is ;

Line 3 wj]

i be listed

option C ¢

| printer.

Page 15.

PARAMETER C. If this is set ON then any lines listed during a List command or
ith an an Assemble command will also be sent to the printer as weil as to the screen.
tor) 18 [Some versions of the EdAssm do not list to the printer as intended but there are

several "patches" available to overcome this problem. Your user group would be
the best source of information on thisl.

ire
PARAMETER N. N can be either {1, 2, or 3, and will decide how the Assembler
ace handies the assembly of messages, i.e. :-
N=1 Al)l messages will be assembled in ASCII format,
e.g. 0 = 48, A = 65.
N=2 All messages will be assembled with bit 6 set
off, e.a. 0 =48, A =1. This will give white characters
on a black background if written directly to the screen.
N=23 All messages will be assembled with bit 6 set
on. e.g. 0 =112, A = 65, This will give black characters
on a white backaround when written directly to the screen.
used. NOTE :- If you are aoing to use VZ200 or V2300 ROM
calls to send characters to the screen then assemble
the characters in ASCII format, i.e. set N =1,
HALT Option, H. This option can be used with the colon (Command line) during
the assembly. Selection of this option will cause a forced halt in assembly until
you press the <C> key.
N.B. A Command line may be used to set parameters or to force a halt, but it
may not do both.
Here is an example of a program using Command lines :-
001 TEST LD HL,7000H
s command 002 LD DE,7001H
on 003 :AC
| with the 004 LD BC, 1FFH
ngs are as 005 LD (HL),32
T 006 :A
007 LDIR
008 XOR A
009 :H
g and thelr 010 LD (26624) ,A
errors 011 JP 7B0CH
Line 3 will turn parameters A and C on. this means that lines from now on will
be listed to the screen (A) and also sent to the printer (C). Line 6 will turn
ror and option C off so that lines will be sent to the screen only and no longer to the
printer. Line 9 causes a halt in assembly until the <C> key is pressed.

Page 16.

i3

\able in the VZ Editor Assembler.
Insert

nand mode several commands are avajlable in the VZ Editor Assembler. ‘
'€al] into three aroups, Text Entry and Display commands, Tape commands, and I<Retu
| Purpose commands. :

Text Entry and Displav Commands

Insert, Delete, Edit, List, Find.

These commands are used to enter the Edit mode to write a new proaram or to read
and/or edit an existing program.

Innn<Re
*¥

N.B. You may have trouble getting started if you don’t know this.

In normal English language usage it is assumed that "editing" is performed on
something previously written but when workling with computers this is not
necessarily the case. This Editor Assembler, in common with many other computer
programs, e.g. word processors, etc., requires the Edit mode both to write new
proarams and to edit existing ones. Similarly, the "Insert" command does not
apply only to insertina new material into an existing file. In the case of this JE Edit
Editor Assembler the Insert command is used to enter the Edit mode regardiess of §&

whether or not there is an existing file. Therefore to begin writing a program _

the command I (for insert) is used to enter the edit mode. This is self-evident J@ E<Return
to those already familiar with computers but unfortunately is not always so to
beginners.

i
i
'

*x L Ennn<Ret
For details on the required program line format see‘the "Line Format" section of Ennn :mmm
this manual.

To exit the edit mode use <Break> (i.e. <Ctrl>- but often referred to as
<Ctr1><Break>). This will return you to the command mode.

N.

The normal V2 cursor left and right functions operate in the Edit mode, i.e. :- f fo
KCtrl1>M = Left
<Ctrl>, = Right

The highest line number avalilable in this Editor Assembler is 999.

ds, and

to read

ed on

computer
te new
s not

of this
‘dless of
program
-evident
3 so to

lection of

Insert

I<Return>

Innn<Return>

Edit

E<Return>

Ennn<Return>

Ennn :mmm

N.B.

Page 17.

i Enter the edit mode to write new program lines. The
first line number should appear on the screen, followed by
the cursor.

(ii) Insert lines directly after the line pointed to by the
Current Line Pointer. This will be the last line listed,
l.e. the one visible just above the command line when
Command mode is re-entered after insertinag or listing.

The next line number should appear on the screen, followed
by the cursor.

Enter the edit mode to write new lines after line number nnn
and before any following lines. The next line number. i.e.
nnn + 1. should appear on the screen. All following lines
will be automatically re-numbered.

Use <Break> (l.e. <Ctrl>-) to exit the Insert mode and
return to the Command mode.

Enter the edit mode to change the line currently pointed to
by the Current Line Pointer.

Enter the edit mode to change line number nnn.

Enter the edit mode to change lines nnn and mmm and all
lines in between.

In this mode after you have edited a line press <Return> and
the next line to be edited will be displayed.

In all the Edit modes a <Break> (<Ctri>-) will end the edit mode

for that line and cancel any changes that have been made.

Page 18.

List

Delete
L<Retur
D<Return> Delete the program line polnted to by the Current Line
Pointer.
Lnnn<Re
N.B. The Current Line Pointer will now point to the line
Just below the one deleted except in the case of the line
deleted being the last line in the source buffer, in which Lnnn:-«|
case it will point to the last line remaining, i.e. the one
that was previously above the deleted line.
L-:nnn<}
Dnnn<Return Delete line number nnn.
Lnnn :mmm
Dnnn:mmm<Return> Delete lines nnn and mmm and all lines in between.
L*<Retur
Dx<Return> Delete complete text file.
You will be prompted SURE (Y-N)? Press Y to delete the filef] Cursor U
or N if you do not wish to delete the whole file. This j (<Ct)
guards against loss of the file because of inadvertent use
of this command.
Cursor D¢
(LCtri;

#%%% WARNING ¥

Whenever a line is deleted an automatic line renumber is done, so all the
lines after the line deleted will be one number less. Because of this if
you wish to delete several lines you should start with the highest number
and work down to the smallest number.

E.g. If you wish to delete lines 15, 24, 38, and 67 you should delete 67
first and 15 last. If 15 was deleted first 24, 38, and 67 qould all be
renumbered (to 23, 37, and 66) and a D24<Return> would then delete the
wrong line, and again renumber all the following lines. Thus all
deletions after the first one would affect the wrong lines.

ww

1ine
line
which
he one

the file
his
nt use

all the
this if
. number

elete 67
all be
e the

List

L<Return>

Lnnn<Return>

Lnnn:-<Return>

L-:nnn<Return>

Lnnn:mmm<Return>

L¥<Return>

Cursor Up
(<Ctri><.»

Cursor Down
(KCtri><Space>)

Find

Fstrina<Return>

Pace 19,

List all lines of the source code currentiy in the buffer.

List line number nnn.

List from line nnn to the end of the existing source code.

List all lines from the beainina of the source code up to
and including line nnn.

List lines nnn and mmm and all lines in between.

List the last line, i.e. the final program line.

List the previous line.

List the next line.

In ail the multiple line listinas the foilowing keys have
the following functions :-

<S> = slow listing down.

<F> = speed listing up.

<H> = hold listinag.

<C> = continue listinag after a hold.

<Break> (i.e. <Ctri>-) = exit the list mode.

Find a particular word or sequence of characters in the
source program.

This command initjates a search through the source file to
find the first occurence of the nominated string. It will
list the line and then ask NEXT (Y-N>? If you wish to find
the next occurence of the same strina press Y. 1f not press
N and you will be returned to the command mode.

Using F<Return> with no string will find the first occurence
of the string last asked for, startina the search from the
line pointed to by the current line pointer.

The string can be a maximum of 8 characters.

Tape Commands : Specjg
Tape Save, Tape Load, Tape Verify, Tape Merge, Tape Object.
Set Or
These commands allow assembler source or object programs to be saved to or loaded
from tape, i.e. they provide program storage on tape for later use.
Set Or
Tape Save
Onnn<R
TS:name<Return> Save your source file to tape for later use.
The name can be a max. of B characters long and must start i O<Retul
with an alphabetical character. Inverse characters are not
recommended because of loading difficulties later in some
circumstances.
Tape Load
TL<Return> Load a source file from tape to memory.
No name is allowed as the program will not search for a file
but will load the first file it comes to. The name of the
file being loaded will be displayed on the bottom line.
Tape Verify
TV<Return> Verify that a source file has been saved correctly. As in
the TL command no name is allowed or searched for. It is
used only to verify tapes made with the TS command, not with
the TO command.
Assembl¢
Iape Merge
: A<Return
TM<Return> Merge a source file on tape with one that is currently in
memory. As in TL and TV no name is allowed or searched for.
This command allows a |ibrary of useful routines to be built
up and then merged into a source file as required.
Tape Qbject
TO:name<Return> Write an object tape, i.e. save the assembled (machine

language) program.

This command can be used only after the source program has
been assembled and provided that no source lines have been
edited, deleted, or inserted since assembling. If the
source has been modified in any way a REASSEMBLY REQUIRED
error message will be displayed.

The program will auto execute when loaded back into the VZ
either with the CRUN or CLOAD command.

Page 21.

Special Purpoge Commands

Set Orliain. Assemble, Run Program. Set Parameters.

Set Oriai

Onnn<Return>

0<Return>

Assemble

A<Return>

Set the origin for the assembled program to nnn.

Set the origin for the assembled proaram to the first free
byte after the source flle.

This command causes the Editor Assembler to set the origin
automatically and is therefore ideal for beainners in all
respects.

If a proaram is assembled here then it can be run with the
editor agsembler stiil in memory.

Provided your proaram does not alter any memory below that
set by the Origin command then you may .iump back to the
Editor Assembler at 31488 (7BO0OH) and your source file will
be intact. This is done by havinag the .iump command as the
final command in vour program, either in the ilast program
line in simple programs or as part of a conditional loop to
enable exit from more complex programs.

Assemble program, i.e. write an object program from the
source program.

The program will be assembled starting from the first free
byte after the source file but it will be assembied in
reference to the value set by the Origin command, which is
the address that the program will load and execute at when
it 1s loaded back into the VZ200 or VZ300 as an object tape.

N.B. The Origin should be set before a program is assembled
(see Set Origin command).

Page 22.

Run

R<Return> Run the assembled program.

The program must be correctly assembled before it can be
Run. To do this two requirements must be met. If any lines
have been edited, deleted, or inserted since assembly you
will receive a REASSEMBLY REQUIRED error. If the Origin is
not set to the first free byte after the source code using
the O<Return> command you will get a WRONG ORIGIN FOR RUN
error, i.e. the program cannot be run from the Editor
Assembler uniess the Origin is set to the first free byte
after the source code.

Remember that the first free byte after the source code is
constantly changing as you enter source lines so if you wish
to test run your programs using the Run command use the
O<Return> command before every assembly. You will be
prompted SURE (Y-N) if everything is correct to run the
program. Assuming that you are sure you are ready to run
the proaram you should run it by pressing Y.

##%% WARNING a¥xx

Always save your source file before test running a proaram in memory
because often the slightest mistake will cause a proaram crash which will
result in one of two things: either the computer will become locked up and
you will have to turn it off and on again to gain control or the computer
will reset itself. In either case all that was in memory will have been
lost and you will have to load the Editor Assembler again and then your
saved source file, If you have not saved the source file you will have .to
type it all in again.

If you have not made provision In your source code for a return to the
Editor Assembler on completion of the program Run the program will
probably default to BASIC on conclusion of the run. The Editor Assembler
and program will then have to be reloaded (the source code will have to be
re-entered from the keyboard if it was not saved). Therefore if the
program 18 to be test Run provision must be made for a return to the
Editor Assembler before assembly of the program. Provided your program
does not alter any memory below that set by the Origin command this can be
done by including an instruction to jump to 31488 (7BOOH) as the final
command in your program, either in the last program line in simpie
programs or as part of a conditional loop to enable exit from more complex
programs.

Page 23.

Set Parameters

The parameters are used to set certain assembly and listing options i.e. :-

N = Message format.
1 - ASCIlI
2 - screen characters white on black background.
3 - screen characters black on white background.
A = List all lines (A On) or only lines with errors (A Off).
B = Halt list at each error (B On> or no halt (B Off).
C = List to printer and screen (C On) or screen only (C Off).

N.B. Some versions of the EdAssm do not List to printer as intended but
there are several "patches" available to make the printer operate. The
best source of information on these would be your user group.

S<Return> Set parameters to default value.

The default values for the parameters are :-

N=1
A = Qff
B = Off
SNABC<Return> Set parameter to the number given (1-3) and turn A, B, and C

on.

Not all four parameters need be given when this command js
used but any parameter not specified will automatically be
reset to its default value,

For full details regarding parameters etc. see section on
“Assembly and Listing Options".

Page 24.

SUMMARY of COMMANDS
Edlt commands
Insert I<Return>
Innn<Return>
Edit E<Return>
Ennn<Return>
Ennn :mmm
Delete D<Return>
Dnnn<Return>
Dnnn:mmm<Return>
D¥<Return>
List L<Return>
Lnan<Return>
Lnon:-<Return>
L-:nnn<Return>
Lnnn:mmm<Return>
L¥<Return>
Cursor Up (<Ctrl>. »
Cursor Down (<Ctri><Space>)
<S> = glow listing down.
<F> = gpeed listing up.
 = hold listing.
<C> = continue listing after a hoid.
<Break> (j.e. <Ctri>-) = exit the |ist mode.
Find Fstring<Return>
Exit Edit mode <Break> (j.e. <Ctri>-)
Tape commands
Tape Save TSname<Return>
Tape Load TL<Return>
Tape Verify TV<Return>
Tape Merge TM<{Return>
Tape Object TO<Return>
Specjal Purpose commands
Set Oriain Onnn<Return>
O<Return>
Assemble A<Return>
Run R<Return>
Set Parameters S<Return>

SNABC<Return>

Page 25.

QPCODES RECOGNISED BY THIS ASSEMBLER

The following list gives the Opcode and a typical Operand followed by a brief
description of the operation performed.

Only those Opcodes are given which are relevant to the VZ Editor Assembler,
however this does seem to be a comprehensive list of Z80 Opcodes.

It would be impractical to list every possible Operand therefore representative
examples showing the general patterns of the Operands that can be used with each
Opcode have been given and it is hoped that these together with the explanations
may provide others with an easier introduction to Assembly Language proaramming
than the writer had.

Proaram Control Operatjons

CALL nn Call address nn, i.e. go to the sub-routine starting at address
nn and follow its instructions.

CALL #*,nn Conditional Call. The call to the sub-routine at address nn will
only be performed if the nominated condition ‘% is met.

RET Unconditional Return.

RET * Conditional Return, i.e. returns only if the nominated condition
‘% is met.

JP nn Jump to memory location nn.

JP (HL) Jump to the memory location indicated by the contents of the HL
memory palr.

JP #%.nNn Jump to the memory location nn if the nominated condition ‘%7 is
met.

JP #*, (HL) Jump to the memory location indicated by the contents of the HL
memory pair if the nominated condition ‘%’ is met.

JR Label Uncondlitional Jump to the location indicated by the Label.
[(Numeric value of relative jumps does not have to be calculated
in Assembly Language programmingl.

JR *,Label Conditional Jump to the location indicated by the Label, i.e.
jumps to the labelled program line only if the nominated
condition ‘%’ is met. [Numeric value of relative .iumps does not
have to be calculated in Assembly Language programming].

Page 26.

DINZ Label
RST nn
NOP

HALT

Conditional Jump to the location Indicated by the Label. - First |
the contents of register B is decremented. If the result is Not

Zero a .jump to the program line indicated by the Label will take
place. If the resuit is Zero the jump will not occur and the
next instruction will be executed. [The numeric value of the

Jump does not have to be calculated in Assembly Language
proaramming).

Restart at page zero location nn.

No Operation. Only the program counter advances. [Sometimes
used to generate short time delays].

The microprocessor stops operation except for the execution of
NOP‘s to maintain proper memory refresh activity. This is used
at the termination of a program or when waiting for an interrupt
to occur, i.e. an interrupt is required to restart after a Halt
instruction.

Conditions (%) :-

C
NC

PE
PO

NZ

Carry.
Do it if Carry fiag Is Set, i.e. if C =1
Non-Carry.

Do it if Carry flag is Reset, i.e. if C

"
o

Sign Negative.
Do it if Sign flag is negative, i.e. If S =0
Sign Positive.

Do it 1f Sign flag is positive, i.e. if S

]
—

Parity Even.
Do it 1f Parity is Even, l.e. if P/V =1
Parity Odd.
Do it if Parity is Odd, i.e. if P/V=0

Zero.

Do it if Zero flag is Set (Zero condition), l.e. if 2 =1 ‘
Non-Zero.

Do it if Zero flag is Reset (Non-Zero condition), i.e. if Z =0 !

Page 27.

Data Trangsfer Operations

LD
LD
LD
LD

LD

LD

LD

LD

LD

IN

IN

ouT

ouT

EX

Note that the general pattern of the operand is as follows :-

First part., i.e. before comma

Load TO. i.e. the value here will be

changed by the operation.

Second part, i.e. after comma

Load FROM, {.e. the value here will not be

changed by the operation.

Brackets enclose a memory address or a register whose contents specifv a
memory address.

A,nn
BC.nn
A.B
C.A

&,(BOY

(BCY.A

A.(nn)

(nn),A

(nn»),BC

A.{(n)

B, (O

n.A

«Cy,B

DE.HL

AF.AF‘

Load the Accumuiator Direct with one byte of data, nn.
Load register pair BC Direct with two bytes of data. nn.
Load the Accumuliator with the contents of recgister B.
Load register C with the contents of the Accumulator.

Load the Accumulator with the contents of the memory
location pointed to by reglster pair BC.

Load the Address pointed to by register pair BC with the
contents of the Accumulator.

Load the Accumuiator with the contents of memory
location nn.

Load memory location nn with the contents of the
Accumulator.

Load memory locations nn and nn+i with the contents of register
pair BC. The contents of C are loaded into the nominated address
and the contents of B into the next address.

Data from the input port ‘n’ is loaded into the Accumulator.

Data from the input port specified by the contents of register C
is loaded into reaister B.

The contents of the Accumuiator are output to Port ‘n’.

The contents of reaister B are output to the Port specified by
reaister C,.

Exchange the contents of DE ana HL reqisters.

Exchanae the contents of the Accumulator and Flaa register with
the contents of the Alternate Accumulator and Flag register.

Page 28.

EX

EXX

PUSH

PUSH

POP

POP

(SP),HL

HL

AF

Exchange the contents of the memory location addressed by the
Stack Pointer with the contents of the L register, and the

contents of the next address, i.e. SP+1, with the contents of the r
H register.

Exchange the contents of the general purpose registers with the
contents of the corresponding alternate registers.

Place the byte from register C onto the stack (at the address of
the pointer less one).

Place the two bytes from register pair HL onto the stack. The
contents of the High Order register are stored in the stack at
the address of the pointer less one and the contents of the Low
Order register are stored at the address of the stack pointer
less two.

Remove one byte from the stack and lJoad it into C register.

Remove two bytes from the stack. The first byte is loaded into F
and the second into A.

Block Data Transfer & Search Operations

LDD

LDDR

LDI

LDIR

CPD

CPDR

The contents of the memory locatlon indicated by the contents of
the HL register pair is transferred to the location pointed to by
the contents of the DE register pair. After the data has been
transferred both HL and DE are decremented by one. The
‘counter-register” palir BC is also decremented by one.

This is the same as LDD except that the instruction will be |
repeated until the value in the “counter-register” palr BC aqoes '
to zero.

This is the same as LDD except that the HL and DE pairs are
incremented by a count of one instead of being decremented. The
"counter-register" pair BC is still decremented. ;

This is the same as LDI except that the instruction will be
repeated until the value in the "counter-register" pair BC goes
to zero.)

The contents of the memory location indicated by the HL register
pair is subtracted from the accumulator and the result discarded.
Both HL and BC are decremented.

This is the same as CPD except that it is repeated until.either
BC = 0 or A = HL.

CPI

CPIR

Page 29.

The contents of the memory location indicated by the HL register
pair is compared with the Accumulator. HL is then incremented
and BC decremented. '

This is the same as CPI except that it is repeated until either
BC =0 or A = HL. o

Input/0utput Operations

IND

INDR

INI

INIR

OUTD

OTDR

OUTI

OTIR

Input from a port specified by the contents of register C. One

byte of data is transferred to the memory locatlon addressed by

the contents of the HL register pair. The values in registers B
and HL will be decremented at the end of this instruction.

This Is the same as IND except that it is repeated until register
B =0.

This is the same as IND except that the HL register contents is
decremented instead of incremented at the end of the instruction.

This is the same as INI except that it Is repeated until reaister
B=0.

Qutputs data from the memory location specified by the contents
of the HL register palr to the port specified by the contents of
register C. The contents of the B register and of the HL
register pair will both be decremented.

As for OUTD except that the process is repeated until B = 0.
Qutputs data from the memory location specified by the contents
of the HL reglister pair to the port specified by the contents of
register C. The contents of the B reglister will be decremented
but the contents of the HL register pair will be incremented.

As for OUTI except that the process is repeated until B = 0.

Page 30.

Arithmetic & Loaic Operations

ADD
ADD
ADD
ADD
ADD
ADC
ADC

ADC

ADC

SUB

SUB

SUB

SBC

SBC

SBC

SCF

CCF

Note that the general pattern of the operand Is as follows :-

First part, l.e. before comma

changed by the operation.

operation TO, i.e. the value here wlll be

Second part, i.e. after comma = operation FROM, i.e. the value here will
not be changed by the operation.

Brackets enclose a memory address or a register whose contents speclfy a
memory address.

A,nn
A.B
HL,BC
IX.BC
A.(nn)
A,nn
A.B

HL,BC

A,(nn)

nn

(HL>

nn

A,B

A, (HL)

Add the value nn to the Accumulator.

Add the vailue in the B register to the Accumuiator.

Add the value in the BC register pair to the HL register pair.

Add the value in the BC register pair to the Index register.

Add the value of the byte stored at address nn to the A register

Add with carry the
Add with Carry the

Add with Carry the
register pair.

Add with Carry the
A regqister.

Subtract the value

Subtract the value
Accumulator.

Subtract the value
register pair from

Subtract the value

value nn to the Accumulator.
value in the B register to the Accumulator.

value in the BC register pair to the HL

value of the byte stored at address nn to the

nn from the Accumuiator.

In the nominated reaister from the

in the memory location pointed to by the HL
the Accumulator.

nn and the Carry Flag from the Accumulator

(subtract with carcy?>.

Subtract the value

in the nominated register and the Carry Flag

from the Accumulator (subtract with carry).

Subtract the value

in the memory location pointed to by the HL

register pair and the Cary Flag from the Accumulator (subtract

with carry).

Set Carry Flag, i.e. C =1

Compiement Carry Flag, i.e. reverse (or invert) the condition of

the Carry flag.

CPL

NEG

Cp

cp

Cp

DAA

INC

INC

INC

DEC

DEC

DEC

AND

AND

AND

AND

OR

OR

OR

OR

XOR

XOR

XOR

XOR

(nn)

HL

(HL>

HL

(HL)

(nn>

nn

(nn)

nn

(nn)

nn

Paace 31.

Complement Accumulator. i.e. chanae all 1’s to 0‘s and all 0‘s
to 1s.
Two’s complement the Accumulator, i.e. change all 1’s to 0’s and

all 0’s to 1’s then add 1 to the resuit. ([i.e. Change the sian
of the number in the Accumulatori}.

Compare the Accumulator with itself.

Compare the value in the B register with the value in the
Accumulator.

Compare the value in address nn with the value in the
accumulator.

Decimal Adiust Accumulator. Produces one digit for the four
least siagnificant bits and one for the four most significant
bits. The carry flag is set to 1 if an overflow occurs.

The contents of the nominated register is incremented by 1.

The contents of the nominated register pair is incremented by 1.

The contents of the memory location pointed to by the nominated
reaister pair is incremented by 1.

The contents of the nominated register is decremented by 1.
The contents of the nominated reaqister pair is decremented by 1.

The contents of the memory location pointed to by the nominated
reajster pair is decremented by 1.

Logic AND the Accumulator with itself.

Logic AND the nominated register with the Accumulator.
Logic AND the byte at the address nn with the Accumulator.
Loaic AND the data nn with the Accumulator.

Loaic OR the Accumulator with itself.

Logic OR the nominated register with the Accumulator.
Logic OR the byte at the address nn with the Accumulator.
Logic OR the data nn with the Accumulator.

Exclusive OR the Accumulator with itself.

Exclusive OR the nominated register with the Accumulator.
Exclusive OR the byte at the address nn with the Accumulator.

Exclusive OR the data nn with the Accumulator.

Page 32.

Rotate and Shift Operations

RL n Rotate operand n Left through Carry (9 bit shift)

RR Rotate operand n Right through Carry (9 bit shift)

RLA Rotate Accumulator Left through Carry

RRA Rotate Accumulator Right through Carry

RLC r Rotate register r Left with branch Carry (B bit shift)

RRC r Rotate register r Right with branch Carry (B8 bit shift)

RLCA Rotate Accumulator Left with branch Carry (B bit shift)

RRCA Rotate Accumulator Right with branch Carry (8 bit shift)

RLD Rotate Left Decimal

RRD Rotate Right Decimal

SLA Arithmetic Shift Left

SRA Arithmetic Shift Right

SRL Logical Shift Right

Bit Operations

BIT n,A Eit ;est. If bit n of the A register is "0’ the Zerc Flag is set
o “17.

BIT n,(nm) Bit test. If bit n of the byte at address nn is "1’ the Zero
Flag is set to 70”.

SET n,F Set Bit ‘n’ in the specified register to the logic One condition.

SET n,(F Set Bit ‘n’ in the memory location indicated by the specified
register to the logic One condition.

RES n,(O) Reset Bit ‘n’ in the specified register to the loglic Zero

condition,

Page 33.

Stack and Stack Pointer Operations

LD

EX

EX

PUSH

PUSH

PUSH

PUSH

PUSH

POP

POP

POP

pPOP

popP

SP.rr

(SP) ,HL

(spy,IX
(SPy.1Y

C

HL

rr
IX

IY

AF

rr
IX

IY

Load the Stack Pointer from the nominated register.

Exchange HL with top of stack, i.e. exchange the contents of the
memory location addressed by the Stack Pointer with the contents
of the L register, and the contents of the next address. i.e.
SP+1, with the contents of the H register.

Exchange IX with top of stack.

Exchange IY with top of stack.

Place the byte from register C onto the stack (at the address of
the pointer less one).

Place the two bytes from register pair HL onto the stack. The
contents of the High Order register are stored in the stack at
the address of the pointer less one and the contents of the Low
Order register are stored at the address of the stack pointer
legs two.

Push contents of register pair rr onto the stack.

Push contents of the IX register onto the stack.

Push contents of the IY register onto the stack.

Remove one byte from the stack and load it into C register.

Remove two bytes from the stack. The first byte is loaded into F
and the second into A.

Pop to register pair rr from the stack.
Pop to register IX from the stack.

Pop to reaister 1Y from the stack.

Intercupt and Machine Control Qperations

EI
M
DI
RST

RETN

nn

Enable the maskable Interrupt.

Set Interrupt Mode ton. (n =20, 1, or 2.
Disable a maskable interrupt signal.
Restart at page zero location nn.

Return from a non-maskable interrupt.

Page 34.

RETI Return from Interrupt.

NOP No Operation. Only the program counter advances. [Sometimes
used to generate short time delays).

HALT The microprocessor stops operation except for the execution of
NOP’“s to maintaln proper memory refresh activity. This is used
at the termination of a program or when waiting for an interrupt
to occur, i.e. an lnterrupt iIs required to restart after a Halt

instruction.

LD I,A Load the Interrupt vector reaister with the contents of the
Accumulator.

LD Al Load the Accumulator with the contents of the Interrupt vector
register.

LD R,A Load the Memory Refresh register with the contents of the
accumulator.

LD A.R Load the Accumuiator with the contents of the Memory Refresh
reqgister.

Pseudo-Operationg

EQU Equates a label to another label or a numeric value.

DEFB Defines constants and variables in the proaram. The aragument for
DEFB is a numeric or symbollc expression that can be resolved in
eight bits.

DEFW Defines constants and variables in the program. The aroument for

DEFW is a numeric or symbolic expression that can be resolved in
sixteen bits.

DEFS Reserves a number of bytes in memory without actually filling it
with meaninaful data, e.g. for allocation of 1/0 buffers and

working storaace areas.

N.B. Pseudo-Operations are not Opcodes that are reccanised by the
microprocessor: they are additional opcodes which ajve instructions to the

assembler.

et et Mt vt T B o

1e1 LTS L vt oy v - —

Summary of Opcodes and Tvpes of Uperations.

ADC
ADD
AND
BIT
CALL
CCF
Cp
CPD
CPDR
CP!
CPIR
CPL
DAA
DEC
DEFB
DEFS
DEFW
DI
DJNZ
El
EQU

HALT

IM
IN
INC
IND
INDR
INI
INIR
JP
JR
LD

LDD
LDDR

Arithmetic & Logic
Arithmetic & Logic
Arithmetic & Logic

Bit

Program Control

Arithmetic & Logic
Arithmetic & Logic

Block Data Transfer & Search
Block Data Transfer & Search
Block Data Transfer & Search
Biock Data Transfer & Search
Arithmetic & Logic
Arithmetic & Logic
Arithmetic & Logic
Pseudo-0Operation
Pseudo-Operation
Pseudo-Operation

Interrupt & Machine Control
Program Control

Interrupt & Machine Control
Pseudo-0Operation

Data Transfer

Stack & Stack Pointer

Data Transfer

Program Control

Interrupt & Machine Control
Interrupt & Machine Control
Data Transfer

Arithmetic & Logic
Input/0Output

Input/Output

Input/0Output

Input/Cutput

Program Control

Program Control

Data Transfer

Stack & Stack Pointer
Interrupt & Machine Control
Block Data Transfer & Search
Biock Data Transfer & Search

LDI
LOIR
NEG
NOP

OR
OTDR
OTIR
ouT
OUTD
OUTI
PGP

PUSH

RES
RET
RETI
RETN
RL
RLA
RLC
RLCA
RLD
RR
RRA
RRC
RRCA
RRD
RST

SBC
SCF
SET
SLA
SRA
SRL
SUB
XOR

Page 35,

Block Data Transfer & Search
Block Data Transfer & Search
Arithmetic & Logic

Program Control

Interrupt & Machine Control
Arithmetic & Logic
Input/Output

Input/Output

Data Transfer

Input/Output

Input/Output

Data Transfer

Stack & Stack Pointer

Data Transfer

Stack & Stack Pointer

Bit

Program Controi

Interrupt & Machine Control
Interrupt & Machine Control

Rotate & Shift
Rotate & Shift
Rotate & Shift
Rotate & Shift
Rotate & Shift
Rotate & Shift
Rotate & Shift
Rotate & Shift
Rotate & Shift
Rotate & Shift

Program Control

Interrupt & Machine Control
Arithmetic & Logic
Arithmetic & Logic

Bit

Rotate & Shift

Rotate & Shift

Rotate & Shift

Arithmetic & Logic
Arjthmetic & Logic

First Load the Editor Assembler into V2. If you load from the beginning of the
tape you will first see a message detailing the new commands that have been
included in the Editor Assembler. Allow the tape to keep loading until you see
the message identifying the Editor Assembler itself and the COMMAND prompt at the
bottom of the screen.

Proaram No. {.

This program will

i. Clear the screen by calling a sub-routine resident in the V2 200/300.

2. Provide for a Return to the Editor Assembler after a program Run.

3. Provide a Time Delay for display to the screen so that it remains
long enough to be visible.

Enter I<Return>

This is the Insert Command that allows you to enter the Edit mode to write
a program. The first line number (001) should now appear on the screen.

Enter ;TEST

This is a Comment Line. It is good practice to use Comment lines
frequently even though they are not actually used in the program, as a
well documented program is much easier to understand when you return to it
at a later date. Also, by making the first line a comment line we make it
easier to ingsert new |ines ahead of the first actual program line later if
we want to. [The Editor Assembier does not allow new lines to be inserted
ahead of line 1.]

Enter <Space>CALL<Space>1CSH

This is a Call to the clear screen routine that is resident .in the. V2
BASIC at address 1C9H, i.e. hexadecimal 1C9 (decimal 441). We are
starting with this so that we can have the screen clear to see the results
of the programs we write.

Enter <Space>JP<{Space>31488

This Is a Jump back to the Editor Assembler program to avoid the delay
caused by re-loading the program when a Run defauits back to BASIC. The
decimal address has been used here, but the hex. address 7BO0OH will do
exactly the same .iob.

Enter <Ctrl>- [often referred to as <Ctrl1><Break>]
This is the VZ BREAK command, but in the Editor Assembler it is used to

exit the Edit mode. You should now be back in the Command mode, as
indicated by the COMMAND prompt at the bottom of the screen.

Page 37.

The Program as it stands wil)l simply clear the screen and then return to
the Editor Assembler. To test this we must first set the Origin to the first
free space after the source code, then Assemble the program, and finally Run it.
Let‘s try it.

Enter O<Return>
N.B. This is the letter O for Origin. If you enter zero instead you wil|]
be advised that vou have entered an ILLEGAL COMMAND. When this happens simply

re-enter the correct command at the prompt.

Enter A<Return>

During program assembly you wil}l first see PASS # 1 on assembly of the
Opcodes etc., then PASS # 2 when the .iumps are checked. Any errors in vour
proarams will be located during assembly and must be corrected before the proaram

will Run. When the assembler has completed both passes and given a zero error
message the proaram is ready to Run.

Enter R<Return>

You will be prompted SURE (Y-N). As the Origin was set to the first free
byte after the source code and the program includes a .iump back to the Editor
Assembler we can safely Run it, therefore:-

Enter Y

The screen will be cleared. but the Editor Assembier returns so quickly
that you will not have noticed the clearing of the Status Line (Top line in
inverse characters across the screen). You will also see COMMAND Y at the
bottom of the screen. This is probably there because the program ran so aquickly
that you still had your finger on the Y key when the Editor Assembler returned
after the prooram run was complete. You can use the normal VZ "Rubout" function
to remove the Y or simply press return to get a new COMMAND prompt. (The Y will
be reported as an ILLEGAL COMMAND but this doesn’t matter as you are
automatically prompted for another command).

As you have seen, thinas happen very quickly in assembly languge programming sSo
before we start doing anything else let’s glow it down a little so that we can
see what’s happening. For this we need a Delay routine. At the moment we onily
need it once, but a routine like this could be used in several places in a long
program so we will start by giving it a Label. This must be from one to four
characters long, and to make things easy it should be something that is easily
related to the function of the routine, so let’s call this one DLY. (If we use
cther delay routines in the same program we could easily call them DLYi. DLYZ,
etc.).

The NOP instruction can be used for brief pauses in program execution, as when
the computer needs time to sort something out, but such a brief pause as is
caused by even a hundred NOP’s would never be noticed by a human being so a delay
loop must be set up. However not only must it be set up, but it must also have
an exit. or the detay will be forever. or until the computer is turned off.
whichever comes first. In the 280 microprocessor the DINZ function is ideal for
setting up time deilays. (Ref. description of DJNZ under “Program Control
Operations” to see how it works).

Page 38.

Before proaressing any further let’s see |f our original program is still
present., (It certainly shouid be, if it was entered as above).

Enter L<Return>

You should see this :- COMMAND L
001 ;TEST
002 CALL 1C%H
003 JP 31488

COMMAND (flashing cursor?>

Now Enter I2<Return>

We could have entered 1002 but in practice the non-significant zeros in
the line number are not needed, so why bother typing them. We are now
Inserting after line 2, before what was origlnally line 3. Note however
that the oriqinal line 3 is now tine 4 pbecause of the automatic
re-numbering carried out by the Editor Assembler each time a new iine is
inserted. The prompt is now at the new line 003.

Enter <Space>LD<Space>B,0<return> [Enter a zero this time, not a letter)
The assembler should move on to the next 1ine when vou press Return.
Enter DLY<Space>DJNZ<Space>DLY<Return>

The Assembler again moves all the following lines down one to enable you
to insert another new line, but for the moment let’s pause and try the
revised program to see what happens at this stage.

Enter <Ctri>- [i.e. <Break>]

The Break takes us back to the command mode, and as you did not actually
enter anything into the last new iine offered it is ignored, as vou will
see if you List your program again (by using L<Return)>).

In these new program lines we have set the B register to zero so that when
it is decremented the first time it will go to 255. Because the DJNZ
checks for condition AFTER the B register is decremented it does not find
the Zero condition it needs to allow the next step in the program to be
carried out. Instead it loops to the Label DLY, in this case from the end
of the DINZ instruction back to the beginning of it. Because this is a
backwards loop It will keep doing this until the B register returns to
zero again. Only then will the DINZ allow the program to move on to the
next line.

Now set the Origin and Assemble the program again, and, if it assembles without
errors, Run 1t.

There should still be no noticeable dlfference. The screen clears, but the
Editor Assembler still returns far too gquickly for an entirely blank screen to be
seen, and our "Y' response still appears after the COMMAND prompt. We have
inserted a delay that is long in computer terms, but still very short in human
terms so we will have to somehow increase the time delay to make it visible,.

Page 39.

I1f you wish to see more cleariy what you are doing List your program again before
making the following additions.

Enter I3<Return>
Enter <Space>LD<Space>C,0<Return>
Enter <Ctri>- [i.e. <Ctri><Break>]

This new line has loaded a value of zero into the C register to set it
also to zero. We then exited the Edit mode because we don’t want to
insert anything eise before the DJNZ instruction at this stage,

Enter L<Return>

Let‘s List it all again to make sure we get our numbers right. We want to
ingert some |ines after the DJNZ instruction now.

Enter I15<Return>

Enter <Space>DEC<Space>C<Return>
Enter <Space>JR<Space>NZ,DLY<Return>
Enter <Ctrl>-

In the two program lines just entered we are decrementing register C and
then causing the program to jump to DLY if it does not find a Zero
condition. Oniy when the Zero condition occurs wil] the program go on to
the next line. The program will keep returning to the DJNZ loop and
repeating it until the JR NZ line finds a Zero condition,

Now set the Origin, Assemble, and Run the program again. This time the screen
should briefly become completely clear, and the "Y" response to the SURE prompt
should no longer appear after the COMMAND prompt when the program returns controi
of the computer to the Editor Assembler.

Let’s now see if we can add another loop to extend the delay time even further.
By now you should be getting familiar with the actual entry procedure so 1’1}
Just tell you what to do and leave you to work out the actual keyboard entries.

After line 4 Insert a line which will set the D register to zero.

After llne ? (the line that now contains the JR NZ,DLY instruction related to the
DEC C) Insert two lines that will Decrement register D and cause the program then
to loop back to the DLY label until a Zero condition is found. When you have
done this List your program again to make sure it really says what you thouaht it
should, and in the right places. If you are satisflied that it is correct then
set the Origin, Assemblie, and Run the new version of the program. You should
find that the screen clears and stays clear for approximately two minutes before
control is returned to the Editor Assembler [f you have written the program
correctly, so wait patiently or take the opportunity of getting a quick drink
while nothing seems to be happening.

Page 40.

Now here |s a question for you? Why couldn’t we have just used two or more DJNZ
loops to achieve the extra time delay instead of going to the trouble of setting
up other realsters to do effectively the same thing?

e.q. Lp C,0
DLY DJNZ DLY
DJNZ DLY

%% WARNING *x Save the "correct” program to tape first if you are aoing to
try to find the answer to this question by entering and running the example
program given above.

If you try this routine instead of using the extra registers and the JR NZ
instructions you wiil find that the screen clears but control is never returned
to the Editor Assembler, and the only way to regain control of the computer is t¢
switch it off and start all over again. Why is this?

If you think carefully about what the DJNZ instruction does you should soon
recognise the proplem. HNeed a clue? It causes an "infinite loop", but why?

Just to make sure that we are still together, your program now should look like
this :~
001 ;TEST
002 Call 1C9H
003 LD B,0
004 Lb C,0
005 LD D,0
006 DLY DJNZ DLY
007 DEC C
008 JR NZ,DLY
009 DEC D
010 JR NZ,DLY
o1t JP 31488

it couid be useful to add some labels now to lines 2 and 3 [use the Edit command
to do thisl. These wil]l make our program easier to follow, but more Importantly,
the labels can be called from other parts of the program later if required (with
some modification to this part to provide for a return to the correct part of the
program on completion of the sub-routine called). Thus, although we are not
ready to actually use them yet we can start from the begining to form a habit of
thinking in terms of program routines and sub-routines.

Remember also that the correct way to make a program easy to follow is by using
Comment lines (e.g. line 1) but as these do involve extra typing and these first
programs are very simple it has seemed expedient to leave them out for the time
being. Labels do make a program easier to followm but this is NOT their purpose,
Their purpose ig to provide a unique identifier for a particular part of the
program so that this part can be found when it is needed, and as often as it is
needed.

Page 41.

We will not write the full sub-routines yvet, but let’s insert labels in lines 2
and 3 to mark the begining of program sections that could be developed into
useful sub-routines. On line 2 add the tabel CLS, for “Clear Screen", and on
line 3 add the label DL1 to mark the beginning of the delay subroutine. If you
have successfully Edited these lines your program should now look |ike this:-

001 :TEST
002 CLS Call 1C9H
003 DLt LD B,O

004 Lb C.0
005 LD D.O
006 DLY DJNZ DLY
007 DEC C

oos JR NZ.DLY
009 DEC D

010 JR NZ,DLY
011 JP 31488

Now let’s return to the program itself. We will concede to the experts that
there are probably much better and more efficient delay routines, but for
beginners this does the trick. The only extra requirement now is to make the
delay shorter to avoid unnecessary waiting to return to the Editor Assembler
after a proaram is Run. This can be done by altering the initial value to which
one of the registers was set. ([More than one of the values could be changed but
it is easier to work with one at a time.]

Remembering that setting the register to zero actually gives a count of 256,
which gave a total deiay in this program of a about two minutes. we can caiculate
that a count of 2 should give about a one second delay. In practice this is not
exactly right, but it does provide a useful rule of thumb. Let’s therefore try
setting the D register to 30 instead of 0 (i.e. Edit line 5 to read LD D.30 ».
and see what happens. You should find this gives vou a delay of about 10-15
seconds. If you find you need more time to see what shows on the screen in the
following programs then simply increase the initial value in register D. or if
you find you are spending too much time waiting for your program to return to the
Editor Assembler then just decrease the value set in D.

DO NOT REMOVE PROGRAM 1 FROM YOUR EDITOR ASSEMBLER!

If you do not intend to continue with the following programs now you may wish to
save Program 1 on tape, both for practice in doing this and to avoid having to
type it back in next time. The following programs incorporate Program 1 so as to
be able to display their results to the screen.

Page 42.

Program No. 2.

This program will write characters to the screen.

To do this we first need to know the screen addresses. These can be found in the
computer Technical Manual and also in the "Quick Reference Section“ at the back
of this guide. The VZ memory map shows that memory locations 7000H to 7800H
(28672 to 29183 declimal) are allocated to Video Display Ram. The actual screen
addresses however only occupy a small portion of this, and are found on the
"Video Display Worksheet" provided in the Technical Manual.

The actual addresses for display access are from 7000H to 71FFH. The top line of
the screen is accessed by addresses 7000H to 701FH, the second 1ine by 7020H to
703FH, etc. The four addresses surrounding the centre of the screen are 70EFH,
70FOH, 710FH, and 7110H. The bottom line goes from 71EOH to 7{FFH. If you
intend doing work which requires accurate screen positioning you should obtain
copies of the Video Display Worksheet provided in the Technical Manual or draw up
somethina similar for yourself on graph paper. For our present purposes we
really only need to know that anything sent out to an address in the range from
7000H to 71FFH will be printed on the screen by the Video Interface, or Video
Display Processor (VDP).

As we intend to write characters to the screen we also need to know the numeric
values that correspond to the various characters, bearing in mind that the
microprocessor operates entirely with numbers.

The VZ uses standard ASCI] values for uppercase characters therefore the numeric
vliaues can be read directly from an ASCII table. The characters of most intere
to us at present are thoge in the standard alphabet, and in ASCII the upper ca
versions of these are assigned values through from 65, for capital A, to 90, §
capital 2. . ’

N.B. Although the standard ASCII values are used for VZ300 Upper Case character!
the VZ computers do not strictly follow tha ASCII codes therefore it is better,
to avoid confusion, to refer to the ASCII Code Table and Character Code chart
provided on pages 203 and 204 of the VZ300 Main Unit Manual (or the eguivalent
section of the V2200 manual) than to refer to ASCII tables from other sources.
However a listing of the main character codes for the VZ300 is included in the
*Quick Reference Section" at the back of this guide for your convenience.

Page 43,

Beginning with the final version of Program i (11 lines) Insert the following
lines after line 2, i.e. immediately after the Call to the clear screen routine
and before the time delay routine :-

003 LD BC,7040H
004 LD A,65
00S LB (BC),A

The first of the above lines, which should be line 3 in your program, loads the
hexaaecimal vaiue of the top left-hand corner screen address into the BC register
pair. The next line loads the decima! value for the ASCII "A" into register A&
(the Accumulator?. The third line instructs the microprocessor to ioad the vaiue
in the Accumulator into the address pointed to by the register pair BC. Provided
the remainder of the program, i.e. from Program 1, is still intact the screen
will be cleared before the value for the letter A is loaded to the screen
address, and the time delay will hold the resultant display on the screen lona
enough for it to be seen., (The VDP actuaily keeps the character on the screen,
once written, which is why the B and C registers can be re-used for the time
delay which prevents too early a return to the Editor Assembler).

Once you have ingerted these lines correctly you can set the Origin, Assemble the
program, and if it assembles error free Run it. You should see an A in the top
left-hand corner of the screen for whatever length of time you have set up with
the time delay.

Once yaou have the correct display you should use the Edit command to change the
values entered into reaister A and the BC register pair. Remember that the only
valid screen addresses, and therefore the only numbers that should be entered
into the BC pair to achieve an output to the screen, are between 7000H and 71FFH.
If you want alphabetical characters you shouid put numbers between 65 and 90
(decimal) into register A, but you could try any number between 0 and 255 decimal
(00 to FF Hex.) to see what it gives (what is actually displayed will be
determined by the VDP: see V2300 Main Unit Manual p204). Numbers larger than 255
are unable to be accepted by register A because it is only an 8 bit register.

You should now be able to place any of the available characters anvwhere vou want
them to appear on the screen.

{You should have noticed by now that if the screen position is not
occupied by the Status Line (top line) or the COMMAND prompt and cursor
the characters actually remain until they are scroiled out by new data
beinag written to the screen., therefore for test programs such as these the
delay routine is not really necessary unless the whole screen is reaquired
for display. However by starting with this routine installed you have
been able to place characters anywhere you liked on the screen without
having them overwritten so quickly that they were not seenl].

Page 44.

Proaram No. 3.

Simple Addition and Subtraction.

Now modify vour proaram so that it is as follows :-

001 :TEST 013 ADD A.L
002 CLS CALL 1C9H 014 LD (BOY,A
003 LD BC,70E8H 015 DL1 LD B.O
004 LD H.65 016 Lb C.,0
005 LD A,H 017 LD D.32
006 LD (BCY,A 018 DLY DJNZ DLY
007 LD BC,70FOH 019 DEC C

008 LD L,66 020 JR NZ.DLY
009 LD A,L 021 DEC D

010 LD (BCY,A 022 JR NZ,DLY
011 LD BC,70F8H 023 JP 31488
012 LD A,H

Lines 3 to 10 of this program place values in the B and L registers. These
values are also put out to the screen as characters, but because it is not
possible to load from H or L to the memory address pointed to by BC the A
register is used to transfer the data. Lines 12 and 13 add the values from H and
L and the result of this addition is sent to the screen as a (VZ character or
block-graphics) character. Lines 15 to 23 now contain the Delay routine and the
Jump back to the Editor Assembler. Once again the values used may change within
the limitations already referred to. Try, for example, loading a value of 150
into both H and L.

Play around with different values in thls program then when you are satisfied
with the ADD operation Edit line 13 to read :- .

013 SUB L

With this chanae to line 13 the ADD has now been changed to SUB (note that the
two instructions do not take the same form). Once again set the Oriain. Asemble.
and Run the program, and try several runs with different values entered into H
and L (and different screen positions if you wish).

In these programs additlon and subtraction have been used to alter the displayed
characters but these operations can be used for arithmetic caiculations also.
Admittedly the 280 CANNOT Multiply or Divide, but because it can Add, Subtract,
and Count this poses no serious problem. To Multiply the programmer simply uses
successive additions for the required number of times and similarly division is
achieved by having the microprocessor count the number of successive subtractions
required to bring the oriainal value down to zero.

— . a a~ im wm v 138 el

Finally, You’ve Only Just Begun.

Finally, you have,
acquire) more machine code routines it is suggested that you keep them stored on
tape (or disk if you are fortunate enough to have a disk drive) for ready access
when you want to use them, and you may find it useful to add listinas of your
machine code routines to this guide also, for ready reference when required. I
would have liked to provide more "graded examples" of machine code routines in
this guide but unfortunately other committments prevent me from putting in the
time necessary to do this., so it‘s over to you. However I hope this at least may
have given you an easier introduction to VZ Assembler Programming than I had.

001 :TRY THIS

002 CLS CALL 1C9H

003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034

LD
LD
LD
INC
LD
LD
INC
LD
LD
INC
LD
LD
INC
LD
LD
INC
LD
LD
INC
LD
LD
INC
LD
LD
INC
LD
LD
INC
LD
LD
INC
LD

BC.7107H
A,72
(BC) A
BC
A,65
(BC).A
BC
A,80
(BCY,A
BC
A.80
(BC>.A
BC
A,89
(BCY,A
BC
A.96
(BC),A
BC
A,80
(BCY,A
BC
A,82
(BC>.A
BC
A,79
(BC>.A
BC
A.71
(BC).A
BC
A.82

Page 45.

In fact, only .iust begun. As you develop (or otherwise

035 LD (BC>.A
036 INC BC

037 LD A.65
038 LD (BC).A
039 INC BC

040 LD A,77
041 LD (BC).A
042 INC BC

043 LD A.77
044 LD (BC>.A
045 INC BC

046 LD A,73
047 LD (BC).A
048 INC BC

049 LD A.78
050 LD (BC).A
051 INC BC

052 LD A.7!
053 LD (BCY,A
054 INC BC

055 LD A.97
056 LD (BCY,A
057 DL1 LD B.O
058 LD C.0
059 ip D,8
060 DLY DJNZ DLY
061 DEC C

062 JR NZ.DLY
063 DEC D

064 JR NZ.DLY
065 JP 31488

Now set Origin to first free
bvte. Assemble. and Run it.

