
THE CFIIP-8 interpreter (Listing l) is a
machine language program which executes
instructions beginning at location 8200
(this is in hex remember!). The inter-
preter has an 'address space of 4K, mean-
ing that it can only access 4096 bytes of
memory. Therefore only three hex digits
are required to specify an address. 8200 is

28 ETI October 1986

referred to as 200 by the Chip-8 interpret-
er, 54A refers to 8544, etc. St-r, if from
time to time, I drop the leading ft. don't
be too bothered about it!

Each Chip-8 instruction consists r-rf two
bytes of hexadecimal data a total of
four digits. Between 200 and AF'C', the'

locations in which a program nrav bt:

stored, there is thus room for about 1150
instructions. You can also use locations
(8)000 to (8) IFF to store parts of the pro-
gram, but never forget that execution is
from location 2A0, so you'll have to use
this section of memory for subroutines or
shape data.

Chip-S is a'what you write is what you
get' sort of language in that there is no
way to break out of a program that is run-
ning, unless you have allowed for this pos-
sibility. This is one aspect that could take
a little getting used to, but don't worry,
you will! The Chip-8 interpreter has in this
regard a trade off. A little speed is gained
in the sacrifice; and for ffie, the speed is
worth it!

The language of Chip-8 supports only 16
variables, an index register, and a stack
pointer (which is rarely used in programs

- it is more useful to the interpreter it-
self !) .

The variables, labelled by a 'V', fol-
lowed by a number (0,1 ,2...D,E, or F), are
each one byte long. They can only be used
to store numbers in the range 0 to 255, so
all operations involving variables are lim-
ited in this way. If any extra space is re-
quired to store the answer to a calcula-
tion, VF is used for the extra piece. (It is
called the carry, and is only relevant to a
few arithmetic commands. Larger number
manipulation is available to a limited de-
gree, using the index register called'f'.
This is a l}-bit number (3 hex digits) and
is used to point to memory locations in
much the same way that the editor pro-
gram has a memory pointer. When you
store 680 in the index register, it points to
location 8680, as might be expected! The
index register is an important part of the
system as it is used extensively in graphics
manipulation; it also allows more than 16
variables to be used by a single program,
if desired.

OK, now let's get things up and run-
ning!

Getting started
Load your copy of the editor program
(ETI August 86 issue), and run it. Then,
type in Listing I beginning at location
7 AEg (type M7AE9 (cr) P then the data
shown in the listing). Check the things
typed, to make sure they are correct and
type in the following:

(i) M9BDF (cr) P0082 (cr)
This sets the memory pointer to 8200
whenever the editor is run.

(ii) M8Ec7 (cr) PE97A (cr)
This connects the Chip-S interpreter to the
editor, allowing it to be activated by press-
ing XC. 8EC7 is the location which con-
tains the start address for the routine
which we want activated by XC - and we
store 7AE9., the interpreter start address,
herc. By the way, locations SEBF to

A CHIP.8
INTERPRETER
r for VZ2O0/300

Chris Griffin

How's it going? Did you get the editor from the last article in
August '86, typed in, up, and running? lf you had any trouble
refer to the note at the end of the article. In this article I use
the editor to set up the Chip-8 interpreter, to write and run
Chip-8 programs. I will also mention details of this particular
dialect and show a few simple programs to get you started.

TABLE 1. GOLOUR OVERLAP

Overlap
ping

colours

Green
Yellow
Blue
Red

Green Yellow Blue Red

Green Yellow Blue Red
'/ellow Green Red Blue
Blue Red Green Yellow
Red Blue Yellow Green

8ECD contain the start addresses for all of
the X commands (XC through XF), so it's
easy to add your own !

(iii) M8200 (cr) PF000 (cr)
A very short Chip-8 program, just to test
things out.

Now, save everything. Use OVZCHIP8
(cr) 7Ae9 (cr) 8F30 (cr) if you have a tape
system, or use BBSAVE "VZCH|PS", 7AE9,
8F30 (cr) if disks are your forte (after sav-

ing to disk, you can restart the editor with
?usR(o)).

Let's run the Chip-8 progranr entered in
(iii) above, by pressing XC. The screen
should have flashed, and the editor re-
started. If it has, so far so good . If not ,

check that the interpreter you typed in is

the same as mine! Tape users will prob-
ably have to start all over again ! ! (This is
because B: programs run automatically
from tape, but not from disk.) When
everything works thus far, read tln...

Ghip-8 graphics
Graphics takes place on the Y Z's mode I
screen. The individual points are labelled
with two coordinates in exactly the same
manner as BASIC (except, everything is
in hex). Chip-8 allows you to display
points (like BASIC), entire shapes (of up
to 8 x 16 dots) and line drawings in 256
sizes (although there are some restric-
tions!) in any combination of colours you
care to imagine. (Of course, only four co-
lours can be used at once in this mode -there is little that can be done about this.)
An object can be positioned anywhere on
the screen, even overlapping another <lb-
ject. Overlapping objects are stored on
the screen in exclusive-or fornt. Table I
shows the consequences of this in colour
mode 0 (COLOR, 0), which is read its: 'if a

red object is placed on a hluc area of the
screen, the overlap is displayecl in yellow'
etc. Funny idea? Not really! Thcsc condi-
tions allow you to renrove objects by sim-
ply re-displaying them. If we numtrer the
colours 0 for green, I for yellow, 2 for
blue, 3 for red, and changc to COLOR, 1

mode the same sort of ideas apply to buff,
cyan, magenta and orange.

A collision occurs if the following pairs
of colours overlap: I & I ., 2&L 3& 3, 3& I .,

3&2. Collisions are registercd through an

object called 'HlT'. HIT equals I means
that there has been a collision, I{lT equals
0, otherwise. After a graphics cotnmand
has been executed, H IT is storcd in VF
(variable F), to allow you to chcck for col-
lision with Chip-tt instructions.

Shape drawing
A 'SHAPE' is eight clots witlc. itntl bc-

twecn I and 16 dots ltlng. ttncl is consid-
ered as residing in a grid (scc Figtrrc I for

an example 8 x 9 shape in its grid). Each
row of the shape is represented by two
bytes of data, that is, four dots to each
byte. The colour of each dot can be inde-
pendently defined using the number of. the
colour that is required.

For the first row of the shape down, we
have two green dots (which are in essence

invisible) five blue dots, and one green
dot. The colour codes are 0,0,2,2,2,2,2,0.
Group this information into clusters of
two digits: 00 22 22 20,, then for each clus-
ter, multiply the first digit by 4 and add
the second to it, giving 0 A A 8 in our ex-
ample. The two bytes used to describe this
row are thus 0A and A8. Every other row
is complete in exactly the same manner
and the data stored in a segment of
memory.

To put this shape up onto the screen,
wc set thc indcx registcr I to point to the
first byte of the shape data, and use a

SHOW command. From the table of
Chip-8 commands (Table 2\, it is obvious
that thc SHOW command is Dxyn, but
w'hat docs that mcan? An example shtluld
makc this clcarer: D456 will show a

shapc. six r()ws long, with thc top lcft

hand corner at (V4,V5). If we want to dis-
play the example shape at (V3,V4), then
use the command D349 the 9 means
that our shape is nine rows long.

Let's write up a real Chip-S program
now.

Writing Chip-8 programs
To write a Chip-8 program, simply put the
instructions, one after another, in memory
from location 200 onwards. Consider the
short program that we typed in earlier;
pressing XC did nothing much, So what
was the Chip-8 program? Well, it con-
sisted of the single instruction F000, which
from Table 2,, 'jumps back to the editor,
or restarts the program if the editor is not
found' - in other words: END! So, that's
why nothing much happened! For a real
program, see Listing 2a. Type this one in
(from 8200), and run it XC. You should
get the picture we designed earlier in the
top left hand corner of the screen. Press a

key, and the program ends. Do you un-
derstand what went on? The comments
given may be of some help! Notice that
we didn't need to switch on mode 1 graph-
ics - it's automatic! (Chip-8 operates en-
tirely in this mode.) For more examples,
we need more concepts so read on.

Golour registers
The colour register is another VZlChip-8
object - like HIT. This, however, is used
to store colour data for some commands
(Fx29, SxyD and SxyE). The register takes
on the following values for colours: 00 -invisible or colour 0, 55 - colour l., AA

colour 2, F'F colour 3. All other
values give combinations of these, and are
best experimented with ! To load the co-
lour register with 55, we could use the fol-
lowing sequence of code. 6F55 FFCC,

which says, load VF with 55, then load the
colour register with VF. Once the colour
is set, we can use 8xyD to plot a point, or
Fx29 to draw a number, in the colour that
we have defined. Type in and run Listing
2b for an idea of colour register graphics
operation.

Joysticks and keyboard
The command ExB4,, reads both joysticks
at once, and assigns Vx to one of the fol-
lowing values, depending on the joystick
position: 00 nothing, 2E up, 20 -down, 4D - left,2C - right, OD - fire.
These codes were chosen as they corre-
spond to the cursor control keys on the
YZ keyboard. Using ExB3 instead of ExB4
reads the keyboard and allows the result
of this command to be treated in an iden-
tical manner to the ExB4 command it re-
places. The break kcy returns a value of
0l if it is pressed, so it too can be easily
testcd for.

B B B B B

B Y B Y B

B B B B B

R

R R R

R R R R R

R

R R

R R

Figure 1. Example of a nine row shape (a
robot figure). Each square is filled with the
colour that is desired. Those with no colour are
green by default, as this behaves invisibly.
Y - yellow colour value is 1

B - blue colour value is 2
R - red colour value is 3
The last row, for example, is 00300030, which
is 0C0C in hex.

ETf October 1986 29

Printing out numbers
See Listing 2c for an example of number
printing. The Chip-8 interpreter has shape
data for the numbers 0,1,2,3...D,E,F au-
tcmatically built in. All that is required is

to retrieve them. The statement Fx29 does
just that: retrieves the shape data for the
last digit of Vx. If v8 is 7 A, F829 re-
trieves data for the number A, and sets

the index register to point to the place
where the .retrieve data is stored, so that
the next display command will show the
correct thing. (The data is stored in sys-

tem memory and will never get in the way
of one of your Chip-8 programs.) That's
OK for single digit numbers. But what
about bigger ones, like 8A, EB etc, or
even decimal numbers (for game scores,
for instance)?

The process of printing decimal numbers
is easy, but fairly long, if you write in
Chip-8. See Listing 2d, which repeatedly
counts from 0 to 99, for an example.
Some important commands are the follow-
ing.

(i) Fx33, converts Vx to a three digit
decimal number, and stores each digit in a
different memory location, pointed to by
the index register. The hundreds get
stored at I, tens at I plus L, and units at I
plus 2, so that if we could load these
values into variables, each digit could be
displayed in the usual way.

(ii) F265 loads the memory from I, into
variables V0, Vl and V2. V0 contains the
hundreds, Vl the tens, VZ the units. We
can now easily display each digit.

Notice also that the printing process is

3s": "*
":t

:Tl,il,f,:'$'#["0,""1, J 1';
order to remove the numbers. (Recall: to
remove things in Chip-S, simply re-display
them.)

How to draw large shapes
SxyE is a command designed to draw large
shapes on the graphics screen. Often, the
object to be drawn is simple in structure,
yet too big for a single 8 x 16 dot shape so

under these circumstances, this command
is used. SxyE uses data pointed to by the
index register, and also a 'SIZE' value
stored in VF, to draw the shape from the
point (V*, Vy). VF equals 1 allows the
shape to be drawn exactly as defined. VF
equals 2 draws the shape twice the size in
both x and y directions, etc. Shape data is
given by a series of bytes, from two to as

many as required. (Shape data for this
command has no maximum length.) The
last byte is always 00, required to tell the
interpreter when the end has been
reached! Each byte, which is rnade up of
eight bits, contains eight pieces of infor-

mation; Figure 2 gives the key to this. The
process of drawing a shape involves direct-
ing an invisible cursor about the screen (in
eight possible directions), leaving trails as

we go if required! A typical instruction to
the cursor might be: PLOT UP 2 DOTS,
which is coded as 1 0 0 0 1 0 1 0 using ls

and 0s. To get this in hexadecimal form,
group data into grouPs of four : 1000

tOtO. For each group, convert the binary
number into hexadecimal, in this example:
8A.
Example: A square. To draw a square'
imagine the following cursor instructions:

pLor luerr lnteHrloowttl up lrounlrwo loNE
Figure 2. SxyE allocation of bits. A 'f in the bit position activates the associated words, eg, PLOT

UP and LEFT 5 is 11001101.

TABLE 2 - UZCHIP.S COMMAiID SUMMARY

0000 No operation. Does nothing.
0040 Store I on the subroutine stack.
00A8 Take I otf the subroutine stack.
00AE Load I with the subroutine stack pointer.
00C0 Set colour to set 0 (green background).
00Cl Set colour to set 1 (butf background).
00E0 Clear the screen.
00EE Return from a subroutine.
Onnn For nnn larger than OFF, calls a machine

code routine at location 8nnn. Allows user
machine code subroutines.

l nnn Go to 8nnn.
2nnn Go sub 8nnn.
3xry Skip the next instruction if Vx equals yy.
4xyy Skip the next instruction if Vx does not

equal YY.
5ry0 Skip the next instruction if Vx equals Vy.
Sxyy Load Vx with yy.
7ryy Add yy to Vx.
8ry0 Load Vx with Vy.
8ry1 Load Vx with Vx OR Vy.
8ry2 Load Vx with Vx AND Vy.
8ry3 Load Vx with Vx XOR Vy (exclusive or).
8ry4 Load Vx with Vx plus Vy (the carry is

stored in VF).
8xy5 Load Vx with Vx minus Vy (the carry is

stored in VF).
8ry6 Load Vx with Vx multiplied by Vy (carry is

in VF).
8ryD Pbt a point at coordinates (Vx,Vy) with

colour as in the colour register.
8ryE Draw a shape with data pointed to by l,

of size VF, beginning at the point (Vx,Vy).
9xy0 Skip next instruction if Vx does not equal

Vy.
AnnnLoad I with 8nnn.
BnnnGo to Snnn plus V0.

Cxlry Load Vx with a random number ANDed
with yry.

Dryn Show a pattern with data pointed to by l,
consisting of n rows with the top left hand
@rner at (Vx,Vy).

Ex9E Skip the next instruction if Vx equals the
key that is down.

EltAl Skip the next instruction if Vx does not
equal the key that is down.

ExB3 Load Vx with the key that is cunently
down.

ExB4 Load Vx with the present joystick posi-
tion.

F000 Jump back to the editor or restart the pro-
gram if no editor is present.

Fx02 Set the sound pitch to Vx.
PXOA Wait for a key to be pressed and load Vx

with that key.
Fx18 Beep for Vx cycles.
Fx19 Produce white noise (hiss) for Vx cycles.
Fxl E Add Vx to l.
Fx29 Produce a digit pattern for the last digit of

Vx and point I at this pattern (colour is
given by colour register).

Fx33 Gonvert Vx to a decimal number and
store each digit in a ditferent byte (lfi)s,
10s, 1s in 3 bytes from 1).

Fx55 Store V0 through Vx to memory pointed
to by | (on completion, I is I plus x plus
1).

Fx55 Load V0 through Vx from memory
pointed to by | (on completion, I is I plus
x plus 1). Opposite of Fx55.

FxCC Load the colour register with Vx.
Any other commands should be avoided
their functions are not defined, but in general,
they do not represent no operation.

TABLE 3. PITCH/DURATIOI{ VALUES FOR SOUI{D GOMMA]IDS

Pltch Duration 2 Duration 1 Duratlon 7z Duratlon 7r

c79
Db 72
D6C
Eb 66
E60
F58

Gb 55
G50

Ab 4C
A48
Bb 44
B40
c38

79
80
88
90
98
AO

AB
B5
c0
CB
D7
E4
F2

3C
40
u
48
4C
50
55
5B
60
66
6C
72
79

1E
20
22
24
26
28
28
2D
30
33
36
39
3B

OF
10
11

12
13
14
15
17
18
19
1B
1C
1E

(Other octaves can be approximated by halving and doubling the pitch and duration values.)

30 ETI October 1986

LlsTll{G 1.I
i

TRE9 = F3 31 FF 8F
7frF 1 _ 78 CD 9C 78
7fiF3 = FF 7F 22 lC
7BA I - 22 lE 7F 2f\
TeAg = 4E 23 22 lE
7BI1 * sF 16 7F C6

7F_19 = lF lF E6 1E

7F'21 = 7B AB 47 7E

; B'2:e - 7D)? l8 D7
:831 - bi .7r) C4 78

li33 : | (:l 78 FC 78
734 I -' F6 /C 63 2C

.rB+3 - BO 7D AA 7D

7E'JJ - 7A 73 FE EE

7853 : 7F ?3 46 23
7BA1 - ED 43 lL 7F
7863 = Ag 2A 2C 2A
787 1 =-- 7F C9 FE A8
7B)'3 = ;F 23 46 23
,,7,t 1 - 7t 22 1C 2F
.7889 = 2h 1C)F ED

.r F;:l 1 'Zir_)2 28 22
,,1833 = EA ?A 13 2I
7Bfrl - 7E 75 A1 FF

i FFg ::r 38 78 32 8A
2BBl = FE CA CA 73
TBB1 _= t6 I8 CO Ag
)ts,c1 - E6 c5 c9 zfr
,-BL!-r = lE 7F 73 28
t'BDi = /f 18 8D 1R

ItsDg -- lV 23 23 22
7B-i 1 - 83 CB 18 F2
TBE] = iF E6 EF 6F
7BF 1 _ E5 78 4E 18

7BF3 = 4E 18 E4 79
TCAI = 12 Cg CD E5
) t;,8? : F E A6 28 2F
7C1i -- 28 13 3A 15

lCi:] -': 17 tg 3Li 20
7Ci:i : L:l 1R R0 12
',,i23

/a-31 =, 3E AA BF 32
)t:.3:J :: 96 18 F4 D5

/i:'11 = 8B 16 88 62
7r-,+3 -: 3A 81 19 1A

7151 - 7C 3? AF 7F
7C53 = 3'7 7E FE AE

2(.b1 = AA AA ED 43
;'La] =: EE 7F 6 F 26

3E A3 32 38
ao a6 6a 21

7F 21 AO 82
lE 7F 46 23
7F 78 E6 OF

88 E8 78 lF
c6 2E 6F 26
23 6E 67 CD

E9 7ts 4E 78
D4 78 EA 78
FF 7C 03 78
68 2C 2Z 7C

3D 78 87 2A

20 aF zfr lC
4E 22 lC 7F
C9 FE RE 38
lC 7F 22 1A

2A AF 2A tC
4E ED 43 TO

C9 FE frA C8

5ts r8 7F 7?
1C 7F C9 FE

aa 7E 11 01

A7 ED Bg 3R

68 C9 E6 FA

17 17 17 17
32 38 78 18
lC 7F ED 58
-,^

a
-,//. ttr lz tu

B9 CA zfr 1E

1E 7F C9 1R

)9 1F 1F 1F

26 7F C9 CD

DE CD E5 78
12 c9 1A 81

78 79 E6 AF

3A 47 FE 03
87 28 03 7E

a4 lR 86 12

C9 1A RE 12

aA lR 86 12

AF 7F C9 lR
4E 1R 5F A6
oR 23 CB il
F8 Dl 7D 12

C9 FE OD CR

CA 28 7E C9

1A 7F C9 3fi
aE E3 22 lE

7C71 - 7F
7C73 = 24
7C81 - 2r
7C89 = 87
7C31 - CD

7C39 = 6F
7cfrl = A3
TCA9 = RF

7CB1 -23
TCB1 = 28
7CC1 - 3D

TCC1 = CD

TCDI = 29
TCOj = 07
TCEI = CE

TCE1 = 69
7CF 1 - BR

TCF? = 78
7DA1 - FE

TDAj = F4
7Dt1-06
7D13 = 9E

7D2l = 2E

7D29
7D31 - 6F
7D33 = 2C

7D41 - 48
7D49 = 51

)Dsi -84
7D53 = 2A

7D61 - FR

7D69 = F4
2D7l = 34
7D73 = 7E

TDBI = BB

7UB9 .= 65
/)31 = 29
/D93 .= 5 C

)Dfil -)F
7Dfi3
TnBl = 4R

TnBg = Dg
7DC1 - AA

TDC9 = EF

7DD I - 47'

,-[rDS :' 7t
TDLI = IA
',,')E3 = 36
/)F i - 28

c9 21 20
3R 2t 7F
7F Rl 12
2A 02 3E
E5 78 7E
23 23 23
D9 CD 70
32 AF 7F
5E 23 E5
03 cB 3R

2s F7 7A
E4 7C 7D
C6 2E 4F
47 08 5F
D9 C9 D9

16 70 19
28 A5 3E

3C E6 lF
83 28 19
2E D3 47
FE Rl C8

CO C3 D7
D9 12 C9

30 a2 1A

26 7D 7E

4D 20 2E

3A 44 FE

FE E2 2A
23 22 36
18 D9 CD

CD F4 2E

2E 87 28
a8 D9 12

FE E5 20
c2 E9 7fr
18 42 1R

23 4D 44
34 FE 1E

1n 4F A6
C3 lR 6F
D9 3R 38
CD 73 7C
68 A6 7A
2D 2A ER

87 87 BA
uE a5 41

7F lR E6
av 23 1A

2A 3A 2A

Zfr 1A)F
o6 afr cD

EA 18 A2
71 23 C9

5F 7E C9

zfr \E 7F
06 0E 58
28 2F 1R

7F CB 79
87 87 6F

73 5i AA

a6 70 a3
5F 16 7E

72 A2 BR

7F C3 CA

iR 1F 1F

46 3R AF

7F RF -32

78 AB 78
a8 3D 2A
CD CB 7E

D5 79 AB

t'E ilg / 8
a8 3D 2A
CD CB)E
c5 D3 Cl
BE ?T AA

CB E6 A7
[rg1 2E ArA

AI 2'D CB

67 28 Atl

23 87 Lg
L9 Atd AA

11 11 1i
11 1i 11

i1 il ii
..'.i it li
aa aa tza

EB 22 IA
'/-.\../-r--r-r-- t_ t-. t_. r t-

FC ?C FC

AC FC L?
C8 FC AC

FT FC AL

FC Ct- FC

FC LC FL

[,1 FA F'
Lr_ ct It
FC FL. |U
a

FI
A(FC

FL AC

lv tt
f () Ff
\ '<-r I \-,

La f-t
It_8 hv:
I

7F 34 6E 26 /DFS =

86 28 RE 32 7EA1 -
Cg 79 E6 AF TEA] =

ta D947 D9 7E11-
26 OA 87 87 7EI9 =

44 4DIREO 7E2l=
7E 5F Ag Dg 7E29 =

2A LA 7F s6 7E31 -
2E OA 73 87 7E39 =

CB 1B CB lD 7E41 _

CD E4 7C 78 7E43 =

CD E4 7C D9 7E51 -
78 CE AA E6 7E59 =

08 D9 El tA 7E61 -
87 28 11 60 2E69 =

57 RE77A2 7E71-
81 32 AF 7F 7E23 =

sF D9 C9 73 7E81 -
30 lE Dg CD 2E83 =

lR B8 73 28 7E3i -
C3 D7 78 FE 7E33 =

78 D9 CD F4 7Efr1 -
DB 20 A6 A5 TEA] =

FB3E 37BA)EB1 -
12 Cg AO AD TEB9 =

73 FE 23 28 7EC1 -
18 28 44 3E TEC] =

a9 lR 6F 26 7ED1 -
7D Cg FE Afr TED9 =

F4 2E 87 2A 7EE1 --

87 28 FR CD 7EE? :

F4 08 CD 5A 7EF 1 -
Cg 21 FE Bfl TEF] =

a4 23 7E FE 7FA1 --

C3 FU BR lB TlAg =

6F 26 OA 23 TFII =

2t 2D AO C3)',Fr3 =

2A EC 2fi 1A)F21 -
AA Eg 22 1A)F29 =

D3 16 21 5R 7F3l .:

78 57 AE 1A 7F33 =

D9 RR 57 32 7F41 -
1A FE AD 2A 7F43 =

Cg iA EO AF 7F3l --

C0 3rd 5F 16 7F59 =:

21 |',/)'F 22 7F e I --

FF ;7 23 13 7F69 =:

F5 Ll3 FE 65 7F7l =

FE 33 2A 2F 7F79 =

7F a I =

IN

2E

AE

FB
3l
5B

4B
t<

DF

DA

23
4F
nl

RE

AF

D9

4F

1Z

LJ
-I

4F

D1

E7
3B

4F
rt1U]

EE

18

B7
37
?B
t-R

AT
rr I
l'l

1

i

1

i
i
BE

CC

3A

FC

FC

tI
tL
FC

FC

Fe,
("4
LLI

aa

o6
a9
AC

iR
1C
l' \-,

C3

tn
4F
CA

26
1F

2A

1R

CB

3A

EO

7F
AF

B4
F5
CB

LJ
84
EE
tx

CD

ao
?a
TD

6F

24
[-fr

aa
l

I

I

I

04
7E

9E
32
4B

F5
TA

46
7B
aa
1l-

E6

E6
3E

AC

tl-
5F

7F

47
1q

CB
{-) q

'1
-)

a/

I.J

CB

.J5

DD

a?
., '\
?B

tB
Bb
a8)

;;
1i
ii
aa
IY

3A

FL
r_i

FL]
() t-
(.; L.

r,c
tl

au
li

LA

CD

77
B8
E5
86
7L
7F

RF

FE

23
EO

o3
FF
E1

a3
C9

DD

1U

23
2A

7r
ri
-,1 q

2A

2F
7E

7E

:?E

CB

81
tr

?2
aa

1

i

t

I

o3
C9

3E
2D

ZE
1r-IU

EB

32
4A

23
1r1r
C6

57
32
4F

1R

2fr
11

B5

F1

2B

CD

R --r

EN

2A

D9
aa
AE

77
2C

2E
1(^
_t (J

11

1i
l1
rl

1"
ll

I r-]L9

3?
AC

at

c4a

)F
3A

C?
ra
L. L!

FC

V-lL

FL

tt
LId

r0)
| (,rv)

aa
aa
3A

FC

FC

L, LI

I

I#

I

I
I

PLOT RIGHT 1 DOT, PLOT DOWN 1

DOT, PLOT LEFT 1 DOT, PLOT UP 1

DOT, END. From Figure 2, the codes
are: 1 0 1 0000 1, 1 00 1 000 1, I 1 00
0 0 01., t 0 0 010 01,'00'. That is: Al
91 Cl 89 00 in hex. The program shown in
Listing 2e uses this data to draw squares

g2 ETI October 1986

random sizes all over the screen - try ard pitch, but are chosen so that the scale

sounds reasonably tuneful when played.
To play a note, of duration Vl, at pitch

V2, use a segment of code like: F292
F118. Be sure to use the correct duration
for the pitch under consideration, other-
wise your tunes will sound uneven ! You

of
it!

Using sound commands
Table 3 shows pitch and duration values

used in YZlChip-8 sound commands. The
values given here are not tuned to a stand-

LlSTll{G 2a.
8200 - 6A 00 - put '00' to VA

A2 0A - point I at 820A, the start of the shape data
DA Ag - show a nine row shape at (VA,VA) ie (0,0)
FB 0A - wait for a key to be pressed, store its value in VB
F0 00 - end

82OA - 0A A8 |
oees I

3f 33 I
ssB I
ffi33 |0c0c I

data for the shape in Figure 1.

LISTIilG 2b. RANDOM DOTS
8200 - CA 7F - put a random number (less than 7F) to VA

CB 3F - put a random number (less than 3D to VB
CC FF - put a random number in VC
FC CC - load the colour register with VC (ie: random colours)
8A BD - plot a point at (VA,VB), a random screen position

EF Bril - scan the keyboard and load the key pressed into VF
gF 01 - if that key is '01' (the BREAK key), skip the next instruction
12 O0 - otherwise, go back to the start (plot another point)

F0 00 - end; lf BREAK key is down, the program will end

tlSTll{G 2G. SCREEI| FULL 0' I{UMBERS
8200 - 6F AA

FF CC - load colour register with blue
6A 00 - '00' to VA
68 00 - '00' to VB

8208 - 6C 0O - '00' to VC
820A - FC 29 - prepare to show VC as a number

DA 85 - show the number at (VA,VB)
7A 08 - increase VA by '08', the next number will be beside the one just shown
7C 01 - increase VC by '01', the next number to display is one nxlre than the last
3C 10 - if the whole row has been shown, skip next instruction
12 0A - othenrise, go back to 820A and show another number
78 08 - prepare to show on next row; increase VB by '08'
38 40 - if we have finished the last row, skip next instruction
12 08 - otherwise, go back to 8208, begin a new row
FF 0A - full screen; wait for a key to be pressed
F0 00 - end

LlsTlNG 2d. CoullTlllc
8200 - 6F FF FF CC 6A OO 22 28 68 00 6C 00 7C 01 3C 00
8210 - 12 0C 78 01 38 06 120A2228 7A 01 4A 64 6A 00
8220-EF833F01 1206F000 Ac40 FA33 Mn F26s
8230 - 68 00 6C 00 F1 29 DB Cs 78 04 F2 29 DB C5 00 EE
8240 - 00 00 00 00

LlSTll{G 2e. L0TS 0F S0UARES
82oO - 65 FF F5 CC 6A 00 C6 7F C7 3F C5 1F 86 55 87 5s
8210 - 85 5475 01 8F 50 A2 24867E7A 01 3A 20 12 06
8220 - FF 0A F0 00 A1 91 Cl 89 00 00

LISTI}IG 2I. GHIRP
82oO - cE 07 7E 02 CA 0F FA 02 FE 18 7A 01 3A 18 12 06
8210 - EF 83 3F 01 12 00 F0 00

don't have to stick to the pitch and dura-
tion values shown in Table 3, so other ef-
fects, such as sirens, can be created. A
sample sound program is shown in Listing
2f.

Saving completed programs
When you have written a program, and
are satisfied that it does what you want,
save it. There are two options here:

(i) Save the program with the editor.
This is for programs which still have not
been fully finished. Save all memory from
7AE9 to 8R10.

(ii) Save the program without the editor.
This is for complete programs, only save
memory from 7 AEg to the end of your
Chip-8 program.

In either of the above cases, tape users
win have to put up with the program run-
ning whenever it is loaded, so if the pro-
gram is incomplete, make sure it ends
otherwise you will never be able to edit it!

NOTE: We have had complaints from read-
ers who could not get the editor listed last
month running. Printed below are correc-
tioru to lines 70 and 380, and two new
lines 770, 780 to be added. As well as this,
we understand that in some issues of the
magazine, the figure 32 between 90 and D6
in line 510 was printed so indistinctly as to
look like 37. So if you have any problems
after amending the listing, check line 510.

CORRECTIONS TO THE 'EDITOR'
LISTING.
THE FOLLOWING ARE THE CORRECTED
LINES.

70 IFT = 1 18550, PRINTUSR (1)

390 DATA1 0,78,C9,DF,20,E9,F1,1 1,
27,8E,C3, 78, 88, 00, 00,00

77O DATA8B,C3, Ec,8B,2D, 22,A0,7 8,
c9,00,00,00
TSODATAET

NB. THE I.AST TWO LINES NEED TO
BE ADDED TO THE PROGRAM.

'---l

Those who couldn't be bothered typing in f-ist- |

ing 1 can get a copy (tape only) by writing to
I

'Ghris Gritfin, PO Box 233, Diamond Creek,
Victoria 3089' and including $5 with the letter
(for postage, packing, tape, and my time!).

o

ETI October 1986 33

