INTERRUPT

This article details how to use the video hardware interrupt on
the VZ200 and gives three simple examples of its usefulness.

THE HARDWARE INTERRUPT is a
very useful feature of a computer’s capabil-
ity, with many different applications. The
usefulness comes from the ability to ‘inter-
rupt’ the normal flow of software execution,
liverting the operation of the CPU by ex-
:rnal means. The CPU can then be made
execute a separate, independent program
fore returning to the original program

:cution.

This description may sound like a
3OSUB call to a subroutine in Basic, or a
CALL to a subroutine in a machine code
program, but there is an important differ-
ence. The difference is that the interrupt
can occur asynchronously to the normal
program execution (that is, it can occur at
any time unrelated to the progress of nor-
mal program execution).

This capability is extremely useful when
the computer has to serve some external de-
vice which can’t wait for an action by the

computer during normal program execu- .

tion. Such devices range from a digital-to-

analogue converter (which must sample
data at strictly regular intervals), to a soft-
ware clock counter which needs to be incre-
mented by an external hardware clock
pulse. By using a hardware interrupt these
devices can be served almost immediately,
in the time it takes the CPU to complete the
current instruction.

The interrupt is called a hardware inter-
rupt because there is a special pin on the
CPU chip itself, which, when taken to
ground potential (low or zero), initiates the
interrupt sequence. This action is also per-
formed by some external hardware device.

The VZ200 uses a Z80 CPU chip, which
has three different responses to this inter-
rupt signal depending on the interrupt mode
set in the internal interrupt register (IR).
Note that we are talking about the INT
case, not the NMT). For the VZ200 the in-
terrupt register is set to interrupt mode 1
(by an IM1 instruction) during the initializa-
tion sequence.

The response to an interrupt in Interrupt

COMPUTING TODAY

VZ200 VIDEO
HARDWARE

Steve Olney

Mode 1 is to complete the current instruc-
tion, save the program counter register
(PCR) contents on the stack (allowing re-
sumption of execution at that point upon
returning from the interrupt) and then jump
to location 0038 HEX. This could be viewed
as a hardware version of the software
RST 38 instruction.

The VZ200 video interrupt

Those of you who have access to a circuit
diagram of the VZ200 will see that the inter-
rupt pin (pin 16 INT) of the Z80 CPU is
connected to pin 37 (FS) of the 6847 video
controller chip. Reference to the 6847 data
sheets shows that pin 37 of the 6847 chip is
the video field sync output pin. This pin is
pulled low by the 6847 chip during the verti-
cal retrace period of the video output signal.
That is, the field sync output pin goes low
every 1/50 of a second (video frame rate of
50 per second) causing the Z&) CPU to be
interrupted and diverted to location 0038
HEX every 20 ms.

Scrutiny of the machine code (in ROM)
at location 0038 HEX reveals a JUMP in-
struction to location 2EB8 HEX. This jump
is referred to as interrupt vector.

The machine code at 2EB8 HEX contains
several CALLs to various locations before
returning to the original program execution.
I haven’t looked at these in detail, but most
likely they are concerned with cursor con-
trol and perhaps screen scrolling during
listing.

In any case, the code in which we are in-
terested is near the start of the code at 2EB8
HEX. The first CALL after saving affected
registers is to location 787D HEX. There
are two interesting points to note here. The
first is that location 787D HEX is in RAM,
and secondly, this is the memory location
referred to in the VZ200 Technical Manual
(under System pointers) as the “interrupt
exit”’.

By PEEKing location 787D HEX (egp

ETI May 1985 — 99

The microbee PC8S puts
advanced co dguter technology

in the hands of Hackers,

Hobbyists and Horticulturalists
at a cost below / any competltors

The new microbee PC85 features a new high level of user
friendliness. At the touch of a button you choose from a menu of
built-in programs — Wordprocessing, Basic, A Calculator,
Telecommunications and more. You can even have your own
software built-in! Check out the new microbee PC8S. You'll be
impressed with the quality and surprised at the price.

Microbee PC85 $499 incl. Tax
with Green Monitor $599 incl Tax
Ask about Printers, Modems and more.

microbee technology centres

N.S.W. S.A.

1 Pattison Ave, Waitara 2077 151 Unley Rd, Unley 5061,
Phone (02) 487 2711 Phone (08) 272 1384

VIC. QLD

729 Glenferriec Rd, Hawthorn 3122 455 Logan Rd, Siones Corner, 4120

Designed and manufactured R
com u er Desikned ane » Phone (03) 819 5288 Phone (07) 394 3688
Applied Technology W.A. FACTORY

141 Stirling Highway, Nediands Koala Crescent, West Gosford 2250
PHONE ORDERS ACCEPTED Phone (09) 386 8289 Phone (043) 24 2711

cept tape operations — see below) without
affecting the beeping. This is because the in-
terrupt has priority over other software ex-
ecution. So we see it is possible to have a
Basic program running in the ‘foreground’
with a separate machine language program
running in the ‘background’ being executed
at regular intervals.

To stop the beep all that is necessary is to
change the JUMP instruction (0C3 HEX) at
location 787D HEX back to a RET (0C9
HEX) by:

POKE 30845,201

Tape operations

As mentioned earlier, there is another ac-
tion which will disable the ‘beep’. During
tape operations, interrupts are disabled to
2nsure that accurate timing delays in the
tape function’s machine code are not dis-
turbed. So while you are CSAVEing,
RUNning or CLOADiIng data to or from
tape the beeping will stop. However, once
the operation is over the interrupts are
cnabled once again and the beeps return.

To enable the ‘beep’ again, enter —

POKE 30845,195
Note: Before typing the above, make sure
that locations 787E and 787F HEX contain
the correct jump address (3450 HEX)!

Non erasable video display

Next we'll look at an example which
shows how the video interrupt can be used
*0 put ‘non-erasable’ information on the
video screen.

Normally, any information displayed on
the screen can be overwritten, cleared or
scrolled off the screen, either during pro-
gram execution or in the immediate execu-
tion mode. By using the video interrupt you
can display information which cannot be
overwritten.

The machine language source code is
shown in Listing 1.

Use the Basic program shown in Listing 2
to enter and then to enable the machine
code program shown in Listing 1.

After you have entered Listing 2,
CSAVE it before RUNning it. You should
iee an “*’ in the top right-hand corner of the
creen. Try to erase this by any means you
ke and you will find the best you can do is

» erase it momentarily (in fact a maximum

"approximately 20 ms, the time taken be-

veen successive interrupts). The only way

.0 erase the ‘*’ is to disable the interrupt
itself, or to disable the machine code
program by:

POKE 30845,201
which POKEs a RET instruction (0C9
HEX) back into location 787D HEX.

Real-time system pointer
display

When programming in Basic a useful fea-
ture would be to see a constantly updated
cisplay of various system pointers (eg start

COMPUTING TODAY

of program, end of program, start of free
space etc) to aid in keeping track of the pro-
gress of these parameters.

To illustrate this principle simply, we will
display the contents of the output latch. A
copy of the latch contents is maintained at
location 783B HEX (307779 decimal). The
latch controls the following:

BIT FUNCTION 0 1
0 speaker O/P #1
1 unused
2 cassette O/P

see note below

toggles according to data
o/P

3 mode control Mode 0 Mode 1
4 background colour green buff

5 speaker O/P #2 see note below

6 unused

7 unused

Note: During a key press ‘beep’ or execu-
tion of the SOUND command, the software
toggles bit 0 and bit 5. When it does this, it
first looks at the state of each bit and then
inverts that state. Normally each bit (0 and
5) are the complement of each other, and
the inversion of both at the same time gives
a ‘push-pull’ like drive signal to the speaker.
However, if both bits were the same, there
would be no differential change when they
are inverted, and so no output. You can
therefore disable the ‘beep’ and the
SOUND command by looking at both bits
and then POKEing a value into location
783B HEX (30779 decimal) which makes
them equal. That is, if the contents of 783B
HEX are even, then POKE back into 783B
HEX a value equal to (contents + 1). Con-
versely, if the contents are odd, POKE back
a value of (contents — 1).

Getting back to the latch display — to in-
dicate the state of each bit, we will display a
‘0’ or ‘I’ for each bit in the top right-hand
corner of the screen.

The machine language source code is
shown in Listing 3.

The Basic program in Listing 4 will enter
and enable the machine code program of
Listing 3. Note that Listing 4 is similar to
Listing 2, so if you have already entered
Listing 2 you can modify it to Listing 4.
Once again, enter the Basic program (List-
ing 4), and CSAVE it before RUNning it.
You should see the contents of the output
latch displayed in binary in the top right-
hand corner of the screen, reading from left
to right, starting with bit 7 across to bit 0.
Change the background colour (COLOR,0
and COLOR, 1) and note the change in bit 4
in the display.

Cursor position pointer

Edit line number 900 to:

900 DATA 245,197,229,58,166,120,6
ReRUN the program.

This will display the honzontal cursor
position pointer (0-31) from location 78A6
HEX (30886 decimal). Use the left/right
cursor position arrows to move the cursor
and observe the display.

Basic program pointers

Now edit line number 900 to:

900 DATA 245,197,229,58,249,120,6
ReRUN the program again.

This will display the LSB (Least Signifi-
cant Byte) of the ‘end of Basic program’
pointer. Try adding extra lines to the Basic
program and note the change in the display.
For example, add the line:

1500 REM TEST
Note down the binary value displayed and
then edit line 1500 to:

1500 TEST
Compare the new display value with the
previous value.

This exercise reveals that although the
short form remark symbol (*) occupies two
screen spaces less than the long form REM
command, it needs two more program me-
mory spaces to store it than the long form!

What next?

These given examples are very simple
ones designed to illustrate the basic princi-
ple of using the video interrupt and do not
show the full potential of the technique. |
have written two programs which utilize this
technique in a more complex fashion. The
first of these is a real-time clock which s
controlled by the internal clock of the
VZ200. This gives a digital readout display
in the upper right-hand corner of the
screen. The real-time clock is implemented
entirely in software (no need for extra hard-
ware or modifications).

The second program demonstrates a
split-screen graphics mode with one part of
the screen having text and lo-res graphics,
with the remainder in hi-res graphics.

Other applications

These are but a few of the many possible
uses of the video interrupt. Other applica-
tions include:
® arcade games — synchronizing move-
ment with the video raster rate to give
smooth action. Mixed hi-res graphics and
text for scoring, simulating instrumentation
etc;
® stopwatch — event timer or lap-scorer;
® frequency counter — using the internal
VZ200 clock to give the timing gate period;
and

® real-time control — using the VZ200 as
a component in a control system, eg burglar
alarm.

The list could go on, as anything which
requires a reasonably accurate time-keeping
function or synchronization with the video
display, is a possible candidate. Which all
goes to show that it’s not always rude to
interrupt! []

ETI May 1985 — 101

LISTING 1

HEX CODE MNEMONIC

FS PUSH AF ; Save 'AF' register because we alter it
3E 2A LD A, 2AH s Load 'A’ register with code for Tk
32 1F 78 LD (781FH),A 3 Put it in the top right-hand corner of
F1 POP AF ; Restore 'AF’ register

co RET 5 Return

LISTING 2

198 S= -32768 : F = § + 7 1’ START AT 8909 HEX

2?2906 FOR I = 5 TO F :* POKE THE 8-BYTE MACHINE CODE PROGRAM
Jae READ D INTO MEMORY STARTING AT 8098¢ HEX

aga POKE I,D H

S@@ NEXT I :

¢@@ POKE 3@846,00 :’ ENTER THE START ADDRESS OF THE MACHINE
9@ POKE 38847,128 ;' CODE PROGRAM INTO INTERRUPT JUMP

8@@ POKE 3@845,195 17 EXIT AT 787D HEX.

933d DATA 245,62,42,59,31,112,241,251:‘ DECIMAL EGUIVALENT OF HEX
LISTING 3

HEX CODE MNEMONIC

FS5 PUSH AF ; save registers

cS PUSH BC ; we destray

ES PUSH HL 5

3A 3B 78 LD A, (?783BH) ; load latch contents

36 B8 LD B,8 5 bit counter

21 18 7@ Lo HL,7@18H ; start of screen display

12 LOOP RLA ;s rotate into carry and test

3@ 87 JR NC, ZERO H

36 31 LD (HL), 31H ; output 17

23 INC HL ; adjust to next display position

14 F8 DINZ LOOP ; go until all bits are done

18 95 JR EXIT ; exit if done

36 3@ ZERO LD (HL) , 39H ; output '@’

23 INC HL 5 adjust to next screen position

1P Fi DJINZ LOOP ; 9o until all bits are done

El EXIT POP HL i exit

c1 POP BC H

F1 POP AF H

ce RETURN H

LISTING 4

19@ S= -32768 : F = S + 29 : 'START AT 8688 HEX

288 FOR I = S TO F > POKE THE 8-BYTE MACHINE CODE PROGRAM
309 READ D * INTO MEMORY STARTING AT 8988 HEX
400 POKE I,D ’

SP8 NEXT I N

699 POKE 30846,904 » ENTER THE START ADDRESS OF THE MACHINE
780 POKE 38847,128 ' CODE PROGRAM INTO INTERRUPT JUMP
8@ POKE 39845,195 17 EXIT AT 787D HEX.

9@@ DATA 245,197,229,58,59,1206,6,8

1898 DATA 33,24,112,23,48,7,543,49

1198 DATA 35,16,248,24,5,54,48,35

1298 DATA 16,241,225,193,241,201

screen

100 — ETI May 1985

PLETRL

Lis

PRINT PEEK[30845]) you should find it
contains 201 DECIMAL (0C9 HEX) which
is the Z80 RETurn instruction.

Using the video interrupt

Let’s just back up to summarize what
we’ve discussed so far. Every 20 ms the Z30
CPU is interrupted by the 6847 video con-
troller chip. The interrupt mode (mode 1)
causes the Z80 to jump to location 0038
HEX. From here execution jumps to 2EB8
HEX where a CALL to 787D HEX is en-
countered. Location 787D HEX (in RAM)
contains a RET instruction and so execution
returns immediately and continues until
2EDA HEX where a return from interrupt
instruction (RETI) is found. Execution is
now RETurned to the original program
flow.

Now, because location 787D HEX is in
RAM, we can change the RET instruction
at that location to a JUMP to some other
selected location. At this location we can
insert our own interrupt servicing code.

Here is a very simple example to illus-
trate this procedure. Starting at location
3450 HEX in the Basic ROM is a subroutine
which generates the ‘beep’ whenever you
press a key. We can alter location 787D,
787E and 787F HEX to contain a JUMP to
3450 HEX to execute this ‘beep’ routine
every time a video interrupt occurs (every
20 ms).

To do this we POKE the following
machine code into memory starting at loca-
tion 787D HEX:

Mnemonic
1P 3450H

Hex Code
C3 50 34

Note: Remember location 787D HEX is
CALLed every 20 ms, so you must not alter
the RET at this location unt:l you have ent-
ered a valid jump address in the following
two bytes. Otherwise the Z30 will jump to
some indeterminate address depending on
what random data was contained in 787E
and 787F HEX.

The following strict order should be used:

POKE 30846,80 (POKE 50 HEX intc

location 787E HEX)

POKE 30847,52 (POKE 34 HEX in*

location 787F HEX)

POKE 30845,195 (POKE C3 HEX i

location 787D HEX,,

Type in the above commands via the im-
mediate mode (without line numbers). The
text within the brackets should not be typed
in as it is for information only.

Once you have done this you should hear
an almost continuous beep from the internal
speaker. Notice that there is nothing which
interferes with this beeping. Well, almost
nothing, as will be explained a little later.
However, you can enter a Basic program as
normal (except for the distraction of the
beeping) and even RUN or LIST it. In fact,
you can do all the normal operations (ex-

