P

. "lu

JeaN. A FEER .

I \ | m ’ " ﬂ
”ﬁﬁf‘\ﬂj\/%mﬂf W#‘“ L'"wi"lmh'\’ﬂ' '“h"«ul"“.’1 ".I"l’ﬁ'b. i’” "“m.l"‘"iu"l’f""“"-m'w "Ir""n. 1!".."“”"“"“'""‘#&'!-(" w‘#‘"u d‘ J .n,.ulﬂ .h"'\
™ " i : [:

att
e

.
.,3*"’

L9877

ISSUUE ##

206 mans

ey e By

=2/ P

v
e

x||‘

FRODUICE D

=Y

N % o M M b
S ﬁ"‘l'l‘ " A“\ F’lﬂ# ‘”rf‘"# m"ﬁ JM H"ul‘ "l ." "W"'I ‘hm I"I .Iu)"‘»l‘| l"u .uw‘u "umm ‘h‘

H.ow WG

M
m“

Y ..Mp .nl" "ln

%‘um R 'h. Alv' "It u.

Zaaro .o

'll.f'

ant”

¥
LA
[

e’
»| w

LW
o

LI[®

ey,

o~
g

s

"W e
-

Wy,

""‘h.,,“

le" "
..L .
»
g
"ﬂLmu.‘.‘_
.J'I‘
by N
-“-h
o
4’ », po e LY
W AT "'-.‘l.
Wi .

COMMI TTEE MEMFIBERS - - - - - - - 1

FPETEF ELLIS FPEESIDENT

3 GOW STREET
HAMILTON NORTH
N.S.W. 2303
(049) 69 5697

MARK O’BRIEN VICE PRESIDENT

46 FERN STREET
ISLINGTON

N.3.W. 2296
(043) 61 54380

ROS3 WOODS SECRETARY

83 LAMBTON PAKRADE
SWANSEA HEADS
N.S.W. 2281
(049) 71 2843

LEIGH ROGERS TREASURER

40 FLEET STREET
NEW LAMBTON
N.5.W. 2305
(049) 57 5738

JOE LEON EDITOR

22 DPRURY STEREET
WALLGSEND

N.S.W. 2287
(Q49) 1 2796

MAIL ALL SUBMISSIONS AND FUNDS TO :-

HUNTER VALLEY VYZ USERS® GROUP
Cs- P.0O. BOX 161 JESMOND
N.S.W. 2299

Ma MATERIAL in this Journal may be reproduced in part or
whole without the consent of the Author who retains COPYRIGHT.

L

EDIYORS corMERNT S - - - - - - - :

First I would like to thank Dave Bovyce, Dave Mitchell and
Poh Kitech who submitted their articles on tape and disk. 1t
greatly reduces the risk of errors creeping in. Thanks fellas.
Some promised articles had to be held over till next issue.

SNOOPY CALENDAR PART 1 hy Dave Boyce :- Page 4-6
Due to +the length of this program part two will be in the
next issue. Snoopy calendar consists of two parts. Part one is

the calendar while part two ig snoopy himself.

UTILITY REVIEW - W.P. TAPE/DISK :- Page 7

Tape W.Prc.-~ssor to Disk conversion wutilities which will
allow vyou to convert vyour Tape W.P. for full disk use and will
also transfer your tape W.P. files to disk.

MERGING W. PROCE3SOR FILES (TAPE OR DISK) :- Page 7
A brief description on the procedure. The insruction book
only mentions that it’s possible using the LOAD command.

INTRODUCTION TO PROGRAMMING BY B. KITCH :- Pages 8-10

This is the second informative part and contains a lot aof
gnad advice on how to become a conmpetent programmer.
Unfotunately a lot of people skip over many articles in
rreference +to more attractive material in magazines. As Bob
mentions it’s very important to plan your program if you want to
improve vour skills.

OTHER VZ PUBLICATIONS :- Page 10

Ther are two other VZ publications besides ours. VZ USER is
on the advanced side while LE'VZ 200,300 OOP is more general in
application. Both are informative and exellent value for money.
TECHNICAL REPORT 1 by Joe leon :- Pages 11-12

The proiect shows how to fit a write protect override suwitch,
change the dAull motor on led to a super bright one and a pouer
on/cff switch to vour disk drive.

RESTORE BY D. MITCHELL :- Pages 13-15

This is a handy utility that will RESTORE your progam after
using the NEW command. May alsoc work after using reset button.
HIGH GAMES SCORE - Page 15

Not much activity in this area but should see some new champs
after the school holidavs.

TECHNICAL REPORT 2 bv .Joe Leon :- Pages 168-17
Two circuits are shown for an electronic shift lock key.

UNDERSTANDING YOUR VZ by Robert Quinn :- Pages 18-20

This is the final in the series and hopefully not the last we
hear from Robert. Quite a few pecple should understand their
VZ’S a 1ot better nou. Much appreciated Robert.

RYTE RACK :-
IT appears our members have more bark than byte as nobody hit
hack As vet. This section is for your comments or queries.

RELIEVE IT OR NOT :-

A 15 vyear old got a COMMODORE for Christmas, connected it
all up. turned on the power and a READY message appeared on the
soreen. So he tvyped in YES and the latest news is he’s still
waiting. Things like that dont happen with the VZ, or do they 7

S

N

r

kg

SU

i1
18

e
sl

MO

(=4
¥
172

19
26

MO

20

27

MO

T rd

Pl b -

SHMNODFY OOl EMDOiR =EY Do EOYCE

L5884
NI

LA Xy}:)’li‘:i)f”
ey O S $4
YYUYY ¥ eRees ¥ R oo,
g gt oo™ 1,1,
M ety tod
. T 1 L RERY
N 4 §1
7 DO K
1
M R
y X

-——”xyny. i)
-% ¥ (1Y 1 X
AL S
- 4 XY

r- 2t) R5 OO

i. % YY Y‘% Y’
P TR T
XA { g

SRR T111801118
X;xxxxix Ponond B
XX

X

A
FERRERRERE XXXXXXXXEXXX!XXXXXXQX'

R, T
géhaaag 7

3

. | ;
i fv'%z%%a%g I

JANUARY FEERUARY

TU WE

& 7
17 14
20 21

27 28

AFPRIL

TYU WE
1

7 8

14 15

a— ol
281 79

JURLY

T WE

1
7 8
14 15

21 27

A

28 29

™™ FR S5A SU MO TU WE TH FR SA SU HO T
12 = 1 2 3 4 5 & 7 1 2
B 9 10 g8 9 10 11 12 13 14 8 91
15 16 17 5 16 17 18 12 20 21 15 16 1

MARCH
U WE
6 11
7 18

T T -3 Lp 2an] L Tl ~—ye - ~ ~ ~ Lo Bog ~- e
22 23 24 22 23 24 25 26 Z7 2 22 23 24 25
. I

29 I0 =1 29 30 E1

MAY

JUNE

TH FR SA SU MO TU WE TH FR SA SU MO TU WE

2 = 4 1 1 2 i
? 10 11 3 4 5 & 7 8 9 7 8

2 3

9 10

16 17 18 10 11 12 13 14 15 146 14 15 16 17

2524 25 17 18 19 20 21 22 2= 21 22 23 24
A0 24 25 26 27 28 29 30 28 29 30

TH

12
12

el
s

T™H

11
18

25

ALIGUST SEFTEMEER

TH FR SAH SU MO TU WE TH FR 5A SU MO T
2 = 4 RILENGS | 1
F 10 11 2z 4 5 & 7 8

: 3 & 7
16 17 189 2 10 11 12 13 14 15 17 14 1
2524 25 14 17 18 19 20 21 22 20
RIS NG | 23 24 25 246 27 28 29 27

U WE
1 2

8 9

S 16

e FaiOr A s |

28 29 30

TH

16
17
24

OCTORER NOVEMBER DECEMEER

T WiE

JELE N

27 28

TH FR SA SU MO TU WE TH FR SA sU MO T
1 23 1 2 3 4 3 & 7

U WE
1 2

a g 2 12 11 12 135 14 6 7 8 9
L5 514 17 18 192 20 21 13 14 15 1é
2 22 2% 24 75 26 27 28 20 21 22 23
29 29 30 27 28 29 IO

™
10
17
24

31

FR

13

20
27

FK

12
19

26

FR

11
18

~e
i |

FR

11
18

e
P apa

SA

14
21

=
Rl

5A

173

20
27

5/
12

19
26

S5A

12

19

SOOI Y Al ERMND @R COORT

[0 7 SNDOPY CALENDAR FOR THE

100 BRROTHER M-100%9 OR EQUIV.

110 * DOT MATRIX FRINTER.

120 * FILE - SNOOPYCL

130 CLS:FRINT:PRINT"DO YOU HAVE YOUR PRINTER"

135 INPUT" TURNED ON <Y/N>":DF%

140 IF DF#="Y" THEN 155

14% PRINT:PRINT" OH WELL !'!' - SWITCH OFF AND COME BACK WHEN":
150 PRINT" YOU HAVE - BYE!!":END

185 CLEARRBOO

1682 VZ¢="z-c==-s=ooo—ooo=—=—=mo=-z-oonmooo======z==="

165 DIM L(11),YR(11,6,4),X%$(9,9)

170 DATA 31.,28,31,30,31,30,31.31,30,31,30,31

172 *==-Km——mm— - X=X K—X === mmmmm KX~ =mmmm e O S —— X
175 DATA" 000000 ", "00000000", "00 00", "00 oo", "00 oo"
180 DATA"OO o0, "00 oo", "00 00", "00000000"," 000000 "
185 DATA" 1 o 11 o 111 "t 11 "o 11 "
130 DATA" 11 o 11 o 11 R O 0 T s PR O O O A A
195 DATA" 222222 ", "22222222","22 22" " AR 222222"
200 DATA" 222222 " ["222 ","22 "L "22222222", "22222222"
205 DATA"33333333", "33333333", " 33 "," 33 o 333 "
210 DATA" 333 " 333", "33 33", "33333333", " 333333 "
215 DATAM 4 o 44 o 444 ", " 4444 ", " 44 44 "
220 DATA"44 44 ", "44444444","44444444"," 44 " " 44 "
22% DATA"HEH55555", "55555555", "H% "o "55 ", "5555555 "
230 DATA"55555555" " 55", "65 55", "555655555", ' 555555
235 DATA" 6686666 ", "Cc66866668", "66 868", "66 ", "oeeses6e !
240 DATA"6RB66666", "66 66", "66 86", "66666666", " 666666 "
245 DATA“77777777" 777777, " e, 77", 77"
250 DATA" 77 L 77 o 77 "o 77 " 77 "
255 DATA" 381828 ", "88888888", "88]g", "88 gg"," 8g]gygs "
2680 DATA" 883888 " _ "88]8" ., "8 gg8", "88838888" ., " 888888 "
265 DATA" 999999 ", "939992339", "99 gg", "93 Qg", "9933939ag”
270 DATA" 9993989" ., " gg", "99 gg", "998959939", " 9938389g
272 ' mm K mmm e K=K m e K- Kmmmmmm e K=Xmmmmmmm KK X
275 FOR I=0 TO 11:READ L(I):NEXT I

280 FOR [=0TO 9:FOR J=OTO 9:READ X3(I,J):NEXT J:NEXT I

285

290 GOTO 440

29% FOE M=0TO 11

298 PRINT".";

300 W=0:DT=1

305 YR(M. D, W)=DT:DT=DT+1:DP=D+1

310 IF D>6 THEN D=0:W=W+1:IF W>4 THEN W=0

315 IF DT<I.{M)+1 THEN 305

320 NEXT M:SOUNDI1,1

32% RETURN

330 Q3=RIGHT$(STR$(Y),4):T1=VAL(MIDS(Q3,1,1))

335 I2=VAL(MID®(Q%,2, 1)) :I2=VAL(MID$(Q3,3, 1))

340 T4=VAL(MID$(Q%.4,1))

245 LPRINT:LPRINT

348 LPRINT TAR(25):" "sVZ3iVZ$:LPRINT

350 FOR I=0TO 9

RED oK mm s e R S G- | C— X

355 BR&=" "EXERCTT, T+ "+X$(I12,1)

360 BRs=Rs+" "+XB(I3, 10+ "+X$ (14, D)

365 LPRINT TAB(25):Bs

37O NEXT 1

375 LPRINT:LPRINT TAB(25):" ";VZSiVZS:LPRINT CHR3(18)

230 RETUEN

SHNOOFRY Cal ERMDAaR CONT - - - - -

28% LFEINT A%

390 FOR W=0TO 4:B&=""

2395 FOR I=0TO 2Z:B3=Bs+" "

400 FOR J=0TO 6

405 IF YR(M+I,J,W)=0 THEN Cs=" " ELSE C$=STR$(YR(M+I,J,HW))
410 IF LEN(C#$)<3 THEN C%=" "+C$

415 B3=R$+C$

420 NEXT J:NEXT 1
425 LPRINT B$

430 NEXT W

43% LPRINT:RETURN

440 CLS:PRINTTAB(G)"

VZ 200 CALENDAR":PRINT

445 PRINT" THIS PROGRAM WILL GENERATE A CALENDAR FOR ANY "3

450 PRINT"YEAR IN THE

RANGE 1901 - 1899. ALL YOU HAVE TO "3

455 PRINT"DO IS SPECIFY THE YEAR!®

460 As=" SU MO TU WE TH FR SA":AS=AS+AS+AS

482 - X-—mmm e D G D D X-———m———— X
465 His=" "+"JANUARY"+" "+"FERRUARY"
470 His=H13%+" "+"MARCH"

475 HZ$=" "+"APRIL"+" "

480 HZ2%=HZ2$+"MAY"+" "+"JUNE"

485 H3s=" "+"JULY"+" "+"AUGUST"
490 H33=H3&+" "+"SEPTEMBER"

435 H4s=" "+"OCTOBER"+" "+"NOVEMBER"
500 H4s=H4%+" "+"DECEMBER"

502 - X-mmmm X—-X-—=mm—- X-X-mmmmmmm e oo X

504 SOUNDI1, 1

505 INPUT" FOR WHICH YEAR WOULD YOU LIKE A CALENDAR ";3Y

510 PRINT" PLEASE WAIT -- I'M INITIALISING MY DATA..... !

515 IF Y<190! OR Y>1999 THEN PRINT:PRINT"OUT OF RANGE":GOTO 505
20 IF 4xINT(Y~-/74)=Y THEN L(1)=29

525 1=Y~1901:J=INT(1/4) : I=1—-4%J+2

530 K=B%(J-7xINT(J/7))+I1:D=K-7¥INT(K/7)

535 GOSUB 295

538 SOUND 3,3:PRINT:INPUT"PRESS <RETURN> WHEN READY...":I
%540 PRINT" PLEASE WAIT ...I WILL NOW"

54% PRINT" PRINT-OUT YOUR CALENDAR FOR"

550 PRINT" THE YEAR-:":Y

552 GOSUR 820°TO SNOOPY ROUTINE

555 GOSUR 3320

558 LFPRINT CHR$(27)+"2"

5680 M=O0:LFRINT H1$:GOSUB 385

565 M=2:LPRINT H2#%:GO3UB 385

570 M=6:LPRINT H3$:GOSUB 385

575 M=9:LPRINT H4%:GOSUB 385

580 CLS:LPRINT

585 INPUT"ANOTHER YEAR ":YY3:IF YY$="Y" THEN RUN EL3E %580
588 END

590 LPRINT CHRs(27);"@"

800 CLEAR SO0:CLS:PRINT"BYE-BYE":FOR LL=1TO 10:LPRINT:NEXT LL

210 END
K20 LPRINT CHR$(27)1"2"iCHR3(1R8); * LINES 187216 APART
830 LFERINT CHR$(1%): *CONDENSED

840 LPRINT:RETURN
1500 ERA"SNOOPYCL"
1600 SAVE"SNOOPYCL":CLS:DIR

LT XL X T Y REVIEW — W_F_ TAOAFE /" DISHE 7

Althrueh the VY7 ha=z theen around for several years, the
hetter tvpe utilities have been few and far between. The VZ tape
Wrrd Processor falls in this rcategory, but unfortunately cannot
be used with Disk. That used to be the case till Dave MWitchel’
aof Rockhampton, Oneensland did something about it. The result
is that with D. Mitchell’s two wutilities you can convert your
Tape W. Processor for full Disk use or Tape LOAD, Disk SAVE.

Mtility one - This will convert your Tape W. Processor
for full DISK use. Tt will SAVE, ©LOAD and give DIRectories of
vonr Disks. Needless +to =av,. it loads/saves much faster than
tape and vou can see what files you have on Disk. The amount of

free Disk space is also shoun. One other built in feature is the
ability to protect sensitive files from unautorised perusal by
making them invisible to the DIRectory command.

Utility two :-— This simply converts your Tape W. Processor
for Tape LOAD. Disk SAVE. IT allows you to transfer your Tape
W. Processor files to Disk to be used with previous converted

full Disk version of W. Processor.
Both versions require a VZ 200/300 with 16K Ram Expansion.

Fortunately for H.V. VZ Users’® Group D. Mitchell has donated
the ahnve conversion utilities as a fund raiser for H.V. VZ
Users' Group. The club owes him its’ gratitude. Thanks Tave.

The two utilities are available from H.V. VZ Users’® Group for
$10.00 and includes Disk, Conversion Programs, full
instructions and Post and Packing anywhere in Australia.

One thing we would like to make absolutely clear is that we
will nnt svpply under anv circumstances D. Smiths Tape W.

Processor. You have to purchase it from D. Smith in the usual
WAY. All we are selling is a means to convert your Tape W.

Praoces=sor for Disk use.

MERGING FILEZ (TAPE OR DISK) :-

Although mentioned a couple times in the W. Processor
instruction haook about MERGING files it does not tell you how *tn

accomnlish it. The procedure is quite straightforward.
Step 1 1~ Refore MERGING files make sure vou have both files
saved to tape or disk. It is verv easy to lose or corrupt one of

the files,.

Step 2 - l.oad first file from tape or disk. Enter EDIT mode
and move the cursar tn hottom of text. Press RETURN about 4
times=. Return to main menu.

Step 3 - l.oad second file from tape or disk and the tuo files
will be MERGED. The second file will be appended to the bottom
of file one.

Failure to move cursor to hottom of text will wipe out previous
text from cursor position down. Use edit commands to rearanee or
edit vour MERGED files. Like allways. test out the procedure
till vou are satisfied von understand its operation.

Any numher of files can be MERGED up to W.P. memorv capacity.

THRTRODUCTION TO PROGRAMMING - - =2
Part 2 - by Bob Kitch.

As mentioned in Part 1 of this series, the programming task
is a large and complex feat of organization and requires a wide

range of skills. It is possible, and best, to break the task
down into six segments - each of which must be thought ahout,

planned and then carried out to ensure the successful completion
of a software project. Even a small program requires that a
cursory consideration of the six segments be made - although some
of them may be quickly passed over as trivial. But it is certain
that larger programs (more +than 200 lines) require careful

planning for success.

Refore describing the six steps, it is worth thinking about
"What makes a GOOD program?"

A program may be judged from a number of different
standpoints; each is not necessarily mutually exclusive and
sometimes some conflicts require that a trade-off be made.

The first criteria is that a program should be EFFICIENT.
Efficiency can bhe considered from a number of varying view

points. For example, optimization of the run-time can be
considered as efficient. Also, reduction in sStorage requirements
for both program code and variables can be considered as
efficient programming. Furthermore, and particularly if one is
developing software commercially, then efficiency c¢an be

measured in terms of the actual +time required to get an
applications program running and the ease of maintenance of that

code. The use of appropriate data types and data structures can
greatly improve the efficiency of a program. The selection of a
suitable algorithm can also assist. Finally, ease of debugging

so that the program can be updated or modified may be considered
desirable.

The second criteria is GENERALITY and it is here perhaps that
S0 many programs "score" so poorly. Rather than a program being

written to solve a particular chore, it should be broadly
written +to handle a wide range of problems. The use of
subroutines and functions developed and debugged previously can
enormously improve programming productivity. Often a simple

substitution of a variable for a oconstant in a program can
broaden the the applicability of the program significantly.

The final criteria is ELEGANCE, which is a little harder to
both define and achieve. An elegant program is one <hat is
simple and ingenious, and 7possibly uses an algorithm or data
structure that may not be immediately obvious to the application.

The so-called "programmer's tricks" are often elegant solutions
to a programming problem; hut beware, some are attempts by
programmers to conceal their programming stategy.

These then, are general guidelines to try and attain in your
programming and by which to judge a particular programming effort
as good, mediocre or poor. Notice that they are not language

specific comments and are equally applicable to any programming
language or exercise.

To return +to the six steps in the programming task - I will
briefly discuss each in turn and ask that you consider each one
when embarking upon your next programming exercise. Also as one
rroceeds through the steps, it is often necessary to recycle
back through some of the preceeding steps, to iteratively
improve the exercise and your understanding of ideas.

INTRODUCTION TO PROGRAMMING - - =

1. PROJECT SELECTION. Thi=z may appear trivial, but we all
have ton many ideas for programs and rarely know which one to

tackle next. Also be honest with yourself: some of the projects
are probably too ambitious for your existing skills and an
attempt upon these will possibly result in frustration and
perhaps failure. Choose an exercise that is challenging and
worthwhile. Try not to "reinvent the wheel", try to be aware
through reading magazines oOr discussing with other Users what
programs are already available. Modifying an existing program 1o
suit your specifications is sometimes quicker - it also allowus
you to study how other programmers tackle problems. 0.K., s0
now vou have an idea or problem that you wish to tackle and
solve.

> PROJECT FEASIBILITY. Again be honest. Do you have the
hardware, software and know-how to achieve the result? 1Its is
not really much use trying to write larsge business—-oriented data
base programs for an 8K tape-based VZ! Check that the task is
reasonable.

3. PROJECT DEFINITION. This is where the idea starts to get

translated into a reality. It is also the phase where generality
can be written in. It is easiest to start by thinking about the
input to the program. Is it kevboard oriented, or is it to come

from a programmhle 1,0 port? Perhaps the program reads only DATA
statments to configure itself or maybe the program must check if
a printer 1is connected to the sytem? Start defining what the
input will look 1like. Assign variable names with meaningful
mnemonic names at this stage also.

Next, define the output expected from the program. Is it to
write to tape and in what format? Perhaps it is to be screen
oriented - can sound be used - or perhaps voice synthesis to tell
the operator what is going on? Plan very carefully and fully the
layout of the expected output as this is how Users will initially
perceive the quality of the program.

After defining the I/0 for the program we should now have a
feel for the anticipated range of parameters that the program is

meant to accept and also handle. This brings in the very
important concept of defining the BOUNDS within which the vrogram
must function correctly. Following on from this, is range

checking of all input parameters so that the program cannot go
beyond +the range that it was designed for and give unexpected

results. A number of warning messages must be built into the
rrogram along with error capture and recovery routines. It is
failure +to define the operating bounds of a program that causes
mnst crashes or rogue behaviour. Even the definition of integer

variahles at this stage can assist by improving program execution
time and reducing storage requirements.

The definition stage should be roughed out on pieces of paper
kept for later reference. Perhaps better, is to use an old
eyvyercise book. Another benefit of this is that over a period of
months vour progress can be measured and your growth of
programming ideas recorded. Another benefit (although I hardly
dare mention it!') is that if. after the coding stage, a system
crrash occurs and vyou didn’t SAVE the progranm, then all is not
lnst — at least an outline of the program remains.

4, DESIGN PHASE. Having sorted out 1/0 and operating bounds,

the actual selection of an algorithm to achieve the result is
commenced. By this time some idea of the number of variables
required and their type should have begun to gel. This is also
the stage where your basic honesty in stages 1 and 2 may catch up
with vou'! Data structure organisation and algorithm selection are
really experience-related skills.

INTRODUCTION TO FROGRAMMING - - 1O

Hence the =uggexztion to read andsor modify exi=ting programs.
BRut do not despair - practice makes perfect.

5. IMPLEMENTATION PHASE. To date very little actual coding

should have been done; in fact the computer need not even have
been turned on'! Some people may be surprised at how late in the
task the computer actually enters into the picture. An awful

lct of planning and organizing can be done off the computer and
on the "backs of old envelopes".

It is also at this stage that the choice of programming
language should te made. Is the program time dependant? If it
is, then it should probably be written is Assembler. If the
actual timing is not so critical then writing in BASIC with its
diagnastics and helpful features (so typical of a high level
language) deem it sensible. Experienced programmers will
probably use a bit of each in practice. A very sensible
compromise is to develop the program in interpreted BASIC and
once finalized and debugged, <compile the BASIC code to speed up
execution.

6. EVALUATION PHASE. This is the moment of truth! Does the
program fulfill all the criteria set out in the definition phase.

If =o, then you have succesfully achieved your task. Is the
output as you expected it? Are the results correct? It is a
good idea to have a standard set of data to exercise the progranm
50 that it can be quickly verified after a program alteration.
Ensure that all logical paths +through the program have been
exercised so that no spurious errors of logic remain undetected.
Finally, deliberately try values that are out of the intended
bounds of the ©program to ensure that you have trapped them and
that the ©program recovers from this type of misuse above and
heyond its’ intended design range.

As mentioned in part 1, +the offer on programming queries
=till stands. If writing to Bob Kitch please include a SAE.
ROB KITCH (07) 378 3745

7 EURELLA STREET
KENMORE 4069
QUEENSLAND

OTHER VZ FPURBLICATIONS - . - -

VZ USER LE’VZ 200,300 0O0OP
MARK HARWOOD J.C.E. D*ALTON
P.DO. BOX 154 29 AGNES STreet
DURAL 2158 TOOWONG 4066
N.S.W. QUEENSLAND

$15.00 PER ANUM $1.00 PER ISSUE

ok
Fd

TECHNICAL REFORT o - - - - - -

WRITE PROTECT OVERRIDE SWITCH :- By Joe Leon

This is to my knowledge the first hardware modification for
the VZ Disk Drive. As most of you may be aware it is possible t3
use the reverse side of your Disks for progranm storage simply by
cutting a matching notch on the opposite side of the Disk.
Commercial Notchers are available for that purpose or you can use
scissors if care is taken. And now to the circuit.

Only the circuit within the box is needed. The rest is par:
of the disk drive —circuitry and is shown so Wwe can understand
what is happening. When a notched disk is inserted in the drive
a small light shines +through the notch on the disk and
illuminates the photo transistor (STR1). This has the effect of
grounding pin 13 of U3. When that happens the disk can be
written to. If you have a Write Protect Tag covering the notch
then a 'DISK WRITE PROTECTED' message apears if you try to write
to the disk.

[+ follows then that to overcome the write protect function

we must ground pin 13 of U3. The easiest way to ground pin 13 o7
U3 is to connect a wire to the 4K7 resistor and the other end to
the switch as shown in the diagran. I used a Flashing Red Led as

a warning for which no resistor is required if used with S Volts.

If vyou have trouble getting a flashing red led from D. Smiths
try TANDY’S. This is a simple project that should’nt present any
problems. Only the top cover of the disk drive need be removed
and just follow +the diagranms. Once installed the switch wil]
allow vyou to write to the flip side of disks without notching or
over a wWrite protect tag on the front side. Exercise care uwher
using the WRITE PROTECT OVERRIDE SWITCH as your disks are no
longer WRITE PROTECTED.

While you have the cover off there are two more modifications
you can try. When the VZ is accessing the drive you only get ¢
dull red glow from the motor on led. It can be easily replaced
by a super bright Smm LED. The easiest way to do it without
removing +the circuit board is to cut the pins of the old led as

close to the body of the led as you can. Then place the super
bright led over the old pins and push it towards the front ti!l]
it nearly touches the rectangular lens and solder in place. Use
caution and a heatsink when soldering the led as they are heat
sensitive. Make sure the led goes in the right way. The
negative side wusually has a flat side on the body. See circuit
diagram.

POWER ON/OFF SWITCH :-

Again this is a simple project. Just a switch and a led with
dropping resistor is required. Or vyou can dispense w;th +the
switch and just use the led with its resistor. Again it’s up to

you where the components are mounted.

If your drive is still under warranty then any modifications
will wvoid it. Dont forget the responsibility is yours for any
mishaps. If you doubt your ability +to carry out +the
modifications thendont.

TECHNICAL REFORT COoOrNT . - - -

WRITE PROTECT OVEERIDE SWITCH :- By Joe Leon
. J1 +5V
] Us U3 U3 K7
WR PRO 11_~" 112 10 11 12 13
13 !
N ‘SV & i

Flashrng

L
Red Led
SW1

—— —
- ——

3

STR1

- L
oV |
_____ O 6
SWi1 — .
RIBBON ; 0 [C VIV [+s5y
CABLE
|
* ! L
5V > N }
PC. BOARD g
470R u ;
DISK DRIVE—- NOT TO SCALE |
Mc3470P 2
3 L3442 ‘j\\/ ale b ;
Super Bright Led |
Led m
PRI -D* J
—'ﬁ Bottom | ;
i View a
ol @
P
. L
[Flasher Led —— ! |

a

b

ESTORE BEBEY DAaVE mMITOCHEL L - - -

ok
P

il
[}

YOU PRESSED NEW INSTEAD OF RUN

'—

DON’T WORRY :-—- When you use the NEW command
the VZ POKES TWO ZERO BYTES
into the start of the basic program
to replace these bytes is very easy
What they tell the computer is
the address of the next line of
the basic progranm.

TRY THIS :-— Type in line 10 then return
Type in line 20 then return

10 CLS
20 PRINT

WITH NO LINE NUMBER TYPE & press return
FOR I = 31465 to 31476 : PRINT 1 ; PEEK(i): NEXT
LISTED ON THE VIDEO SHOULD BE

31465 239 ADDRESS OF THE NEXT LINE (LSB)
31466 122 ADDRESS OF THE NEXT LINE (MSB)

-s 20 e we

314867 10 LINE NUMBER (LSB)

31468 0 LINE NUMBER (MSB)

31469 132 ; TOKEN FOR CLS

21470 0 : END OF LINE

31471 245 i ADDRESS OF NEXT LINE (LSB)
31472 122 ADDRESS OF NEXT LINE (MSB)
31473 20 LINE NUMBER (LSB)

31474 0 ; LINE NUMBER (MSB)
31475 178 ; TOKEN FOR PRINT
31476 0 ; END OF LINE
31465 & 3148868 contains the address of the next line. WITH simple
maths it is easy to find this address :-

239 + 256 x 122 = 31471

CHECK 31471 YOU WILL SEE IT 1S THE ADDRESS OF THE NEXT Line.

List the program vou typed. Now press NEW & return.
List again, WHAT DID YQOU GET ? WAS IT NOTHING 7

TYPE :- PRINT PEEK(31465) ; PEEK(31466) & press return.
IT SHOULD BE --—- O O
TYPE :— POKE 31465,239 : POKE 31466, 122 : LIST & press return

You have just got the program back from the UNKNOWN !

Here is an example in basic of what the machine code does.

10 A = 31467

20 B = PEEK(A)

30 IF B <> O THEN A=A+1 : GOTO 20
40 IF B = O THEN A=A+1

50 C=A-(2568XINT(A/256)

680 D=TNT(A/256)
70 FPOKE 31465.C
80 POKE 31466.D

FRESTORE CORNT O - - - - - - - - 1 45

In line 10 'A' equalz the normal =start of the bazic program plu=
two.

Line 20 'B’ looks at what is at location ‘A’

Line 30 checks if 'B' is bigger or smaller than zero and adds one
to 'A’ then goes to line 20

Line 40 checks if °'B’ equals zero then ’A’ is added with one. (the
zero inicates the end of the basic line.)

Line 50 works out the LEAST SIGNIFICIANT BYTE (LSB).

Line 60 works out the MOST SIGNIFICIANT BYTE.

Line 70 POKES 31465 with the LSB.

Line 80 POKES 314686 with the MSB.

The above program is only an example to help you understand
the assembler code later.

FOR THOSE WITHOUT AN ASSEMBLER PROGRAM.

10 FOR 1 = -20480 TO -203391

20 READ A:POKE I,A: NEXT
30DATA205,201,1,33,39, 176,205, 167,40, 17,236, 122, 19,26,254,0,32
40DATA250, 19,235, 34,233, 122, 33,233, 122,34, 164, 120,205, 248, 26,35
SODATAR4, 249, 120, 195,25,26, 13,32,32,32,32,32,32,32,32,32,32,32
60DATAR2,.69,83,84,79,82.69, 13, 13,32,32,32,32,32,66,89,32,68, 46
70DATA77,73,84,87,72,89,76.76,32,32,86,75,52,75,68,85,0,0,0,0
80 CLS:PRINT"SAVE TO DISK OR TAPE (D/TH"

90 A13=INKEY$:A3=INKEY$:IFA3<>"D"ANDAS>"T"THENSO

100 SOQUND30, 1: IFA$="T"THEN180

110 IF PEEK(16384) = 170, 140

120 PRINT"NO DISK DRIVE YOU NAUGHTY PERSON"

130 GOTO 180

140 PRINT"INSERT DISK,CLOSE DOOR & PRESS RETURN"

150 IFINKEY$<>CHR$(13), 150

155 SOUND3O0, 1

160 BSAVE"RESTORE", BOOO, BOSS

170 END

180 FOR I = -245768 TO -24526

190 READ A: POKE I,A: NEXT

200 PRINT"INSERT CASSETTE,PRESS PLAY & RECORD THEN RETURN"

210 IF INKEY$ <> CHR$(13),210

220 SOUND30, 1

230 POKE 30862,0:POKE 30863, 1680:X=USR(0)

240 END

250 DATA33,0,176,34, 164, 120,33,89,176,34,249, 120

260 DATAR3,38, 160, 14,241,243,205,172,92,251,33, 233, 122
270 DATAR4, 164, 120,205,248, 26,35,34,249, 120

280 DATA19%,25.26,34.82,69,83,84,79,82,69,34,0,0,0,0

Lines 10 tao 70 contains the data for restore.
Lines 80 to 100 checks for saving to disk or tape.
Line 110 checks for a disk drive.

Lines 120 to 130 prints an error then goes to tape save.

Lines 140 to 170 saves to disk.

Lines 180 to 190 sets up data for AUTO-RUN tape save.

Lines 200 to 210 prints message & waits for the return key to be
prressed.

Line 230 jumps to the machine code for AUTO-RUN TAPE SAVE.
Lines 250 to 280 data for auto-run tape save.

FOR MULTIPLE COPIES :- DISK TYPE GOTO 140
TAPE TYPE GOTO 200.

FESTORE CORT . - - - -

THE ASSEMBLEE CODE.

CALL O1CSH

LD HL,MES

CALL 28A7H

LD DE,7AECH
SCAN INC DE

LD A, (DE)

CP OOH

JR NZ,SCAN

INC DE
EX DE.HL

LD (7AE9H).HL:load the contents of HL into 7AES HEX.

LD HL.,7AESH

LD (78A4H),HL;load start of program with HL.
;reset program statement table.

CALL 1AF8H
INC HL

LD (78F9H).HL;1load end of program with HL.

sclear screen.

:load HL with the message address.

iprint the message.
sload de with 7AEC hex.
sadd one to de.

:1oad 'A’ with what is at the address of DE.

stest - is it a zero.

:NO - go back to scan & do

;YES - continue.
;add one to DE.
sexchange regesters.

;load HL with 7AE9 HEX.

sadd one to HL.

it again.

JP 1A18H sy JUMP TO BASIC.
MES EQU 3 ;start of message.

DEFB ODH jcarriage return.
¥ [11 spaces]l RESTOREx

DEFE ODH scarriage return.

DEFB ODH scarriage return.

* [5 spaces] BY D.MITCHELLxX
% {2 spacesl VK4KDAX
NOP send of message.

ORGIN 0BOO HEX.
START OF PROGRAM BOOO HEX.
END OF PROGRAM BO59 HEX.

NOTE :- PROGRAM WILL RUN IN A STANDARD VZ300 OR VZ200 + I16K.

HIGH GAamMES SCOCORE - - - - - - -

ASTEROIDS 35020 . . . MATTHEW TAYLOK
CIRCUS 1350 . . . GEOFFREY KEEN
DAWN PATROL 60200 . . . MATTHEW TAYLOR
pi¢ our 83700 . . . GEOFFREY KEEN
GALAXON 29200 . . . MATTHEW TAYLOR
GHOST HUNTERS 18780 . . . CHRISTIAN WARNER
HAMBURGER SAM 83800 . . . GEOFFREY KEEN
HOPPY 10740 . . . MATTHEW TAYLOR
LADDER CHALLENGE . . . 25400 . . . HMATTHEW TAYLOR
PANIK 18720 . . . BARRY KEEN
PLANET PATROL 1591 . . . WARREN KEEN
ROAD WARRIOR 28370 . . . MATTHEW TAYLOR
SPACE INVADERS 17290 . . . MATTHEW TAYLOR

STAR BLASTER 812 . . . ADAM HMAGEE

~-

TECHNI CAL REFORT - - - - - - - 1 &
SHIFT LOCK SWITCHES :- By Joe Leon
Instead of using a mechanical push on/push off switch an

electronic FLIP FLOP can used. Two versions are shown. I'11
leave it up to you which version you use.

CIRCUIT 1 :-—

This circuit uses one half of a duval flip flop. This is the
one I used. The P.B. SW. (Push Button Switch) shown can be a
small momentary switch mounted anywhere convenient. In my case I

used +the RIGHT SHIFT KEY on the VZ 300 Keyboard. If you decide
to use this option then the track on either side of the Right
Shift Key on the Keyboard P.C.B. must be cut. Solder a thin wire
to each side of the KEYPAD on the track leading to the isolated
Shift lock switch. The other ends of the two wires go as shoun
on the <circuit diagram. While you have the Keyboard apart you
may decide to mount the 3mm LED as I did. It went in the Right
Shift Key Cap itself, right above the "I" in the word SHIFT. It
looks neat. The choice is yours where it goes. Connecting th=
Transistor to the keyboard matrix is straightforward. When built
the LED will let vyou know when the switch is on. If the LED is
on, but Shift Lock is not then try reversing the leads from the

Transistor.
CIRCUIT 2 :-

This circuit does the same job as above and is intended for
Persons who built the softstart switch as shown in the November

issue, page 8. It uses the left over gates from that circuit.
CAUTION :-

Both IC’S are CMOS type and special handling precautions mus-<
be observed. Do not touch the pins on the IC'S as static can
destroy them. Use a socket for the IC just to be safe. Also all
unused INPUTS must be grounded or taken to +5V,. Pinouts for hoth

IC’S are shown to help intending constructors.

And | bought this one to explain
the manual of the first one!

s S

TSR A I

~

TECHNICAL REFORT CORNT . - - - - 177

SHIFT LOCK SWITCHES :- By Joe LEon
CIRCUIT 1
—O +5V
3mm
I LED %’; D2
o 1K
[1 PB. SW. Q
0 ; ww—~({
- -— Clé- 112 4013 390R BC547 —_
- D o ol e
[S
§220K:L’1u 5 S 17 RIZ 2 ol e—
Tant 35 >—
l — A2 -——
— —s —~0 0V =| e
GROUND PINS 8,9,10,11. =
=] I
O g
CIRGUIT 2 =
MWW —> D2 > e—
4K7 -
| D2
8 10 12 w| ¢ED
“GND
q %B‘ 135 BC547 §
B.SW. 390R
<|> 220K x0
| o e
< om
47n X3mm >
1/2 4093 L 17050 L. ., % 2
- - <<
N
4083 4013
1T |4 T*5Y Al T 1@ T
2 IT 13 Ei ;L- : 9 Q
3 0] |rz cLis | 121@
4 11 RST|4 : 11] cL
5 10 _ols ' 1glgst
i S
6 9 serls. ! g|p
7 H 8 : N
- 7 8|SET
L] I L

UNDERS TaNDIRNG YOuR VA2 - CC? - 183

NOTE :— See inzue &, page 18 for LLISTing of DLINE.
DLINE is the deluxe version of LINE. When you have 2ntered
T'LINE, ~heck +the accuracy of the DATA statements Wwith this

direct command:
FORR=29184 TO ~9280: READA:Z=Z+A:NEXT:PRINTZ

1f vour answer is not 6319, then recheck all the numbers in
the DATA statements at the end of DLINE. When RUNSO00O0, DLINE
will ask for a line number. Enter the number of the program line
vou want analysed, or enter a basic word. If you enter a word,
DLINE will search through the word table {token list tatle) for
the word and print the token code for that word, then ask for a
line number again.

When a line number has been entered, DLINE will ask for a

token. If vou want DLINE to seek out a particular token cnde in
the line. +then enter that token and DLINE will display each hyte
in the line in continuous sequence, pausing only when it

encounters an instance of the token. I1f you do not want DLINE to
search for a particular token, then simply press <RETURN> and
DLINE will display the first five bytes of the line and pause.
Press <SPACE> to single-step through the remainder of the line.
DILINE will display the address of the memory cell for each bhyte
hvte in the line (first.second,third,etc.), the byte itself,
then the character or hasic word designated by the hyte (under
the 2 heading) and, finally, the negative PEEK/POKE address of
the hyte if the address is greater than 32767. Whenever DLINE
pauses, you can press <0> or <L> or <X> key to activate a
prarticular POKE facility.

0> DLINE will ask for a POKE address and then POKE the number
140 (+oken code for LET) to that address.

P DLINE will ask for a POKE address, then for a TOKEN, and
POKE +he tnken number to the address.

D G DLINE will ask for a TOKEN and then POKE the taken numher
ta the last address displayed on the screen.

TR Pressing this key will reRUN DLINE.
50200 TFZ=192THEN PRINT"VARPTR"::RETURN

This line in DLINE recognises the token for VARPTR and lists

+his word when it encounters the token. Other similar lines can
he inserted into DLINE faor other words that are not functinonal in
the wnrd table. Thev should have line numbers greater than 50300

and less than 503220,
EG. 503021FZ=1968THEN PRINT"STRINGS"; : RETURN

Such lines shnuld te inserted after DLINE has been merged
with another program, hecause DLINE is already close to the
maximum length of a prosram that can be merged using the MERGE
routine accompanying this article. Any further lines will take
it nver the limit. Thase nf you who have a disk drive can run
DILINE and +then BSAVE a thinary program of the machine code
rantines used hy DLINE:-

UNDERS TAaANDING YOuUuR VYZ CONT . - 1<

BEAVE"LCODE" , 7200, 724C and +then delete all the DATA =tatements
and the READ/POKE routine from DLINE. The memory gained can then
he used +to install a number of statements for recognising and
listing various nnonfunctional words as indicated above.

Line 0010 should now read:

50010 IFPEEK(29223)=233ANDPEEK(29224)= 233THEN50030 and a line
50020 entered thus:

50020 INPUTB:BLOAD"LCODE"

The INPUT statement is simply a precaution to prevent you
from initiating BLOADing of LCODE without a disk in the drive or
the door closed (you've had that experience too have you?).

Incidentally. if vyou want to use VZ disk commands in
conditinnal statements, the trick is to insert a colon betueen
THEN and the disk command, like this:-

80 TFK=9THEN:BLOAD"PROGRAMN"

The deluxe version of line is obviously too long to type in

every time you want to append it to a progran. Salvation is at
hand in the form of a merge routine. You need only type DLINE in
once, save it on tape or disk, and thenceforth use the MER

program to join DLINE to other programs.

MER allows you to join one program onto the end of another so
that thev become a single program. Type in MER and save. Check
the length of MER with this length command:-

PRINTFEEK (30869)+PEEK (303870)%25 6-31455

The answer should be 370. Then check the machine code of the
MERGE rountine with this command sequence:

FORR=21273T031354: READA:B=B+A:N EXT:PRINTB

The answer should bhe 9118, If not, check out all the
nutnbhers in the DATA statements. When RUN, MER sets up a machine
code MERGE routine in the communications region. MERGE is the

rrogram which does the adding on.

FPEOG 1 is the program you wish to add on.
PRCG 2 is the program to which vou want to add PROG 1.

The maximum lensth for PROG 1 is 1534 hytes. If you have any
donbts as 1o whether PROG 1 exceeds the maximum length, then
check the length with the above command. For trouble-free
merging, ensure that the line numbers for all the lines in PROG 1
are greater than all the line numbers in PROG 2.

Fnter the following sequence of commands to carry out a merge
(CRUN and CLOAD if you are nsing a cassette recorder):

RUN"MER" Transfers M. Code MERGE to communications region
LOAD"PROG 1" *Use your name for PROG 1
PRINTHSR(R) *MERGE copies PROG 1 to video memory

LOAD"PROG 2" *Use your name for PROG 2
PRINTUSR(R) *MERGE a2dds PROG 1 ontce end of PROG 2

UNDERSTARDING YOUR YZ CONT - - =

Most routines vyou would want to merge with another program
would be less than the maximum length permitted (1534).

However, should vyou want to add on a longer routine, Yyou
~an do it in stages. When you load PROG 1, chop PROG 1 in half
by wusing the DELETE command (see Table X) to remove the top end
of PROG 1, and complete the merge. Save the result; this will
he vyour new PROG 2. Now repeat the merge sequence of commands
from LOAD"PROG 1" onwards.

This time DELETE +the bottom part of PROG 1 and merge the
remainder with the new PROG 2.

Once MER has been run the MERGE routine can be used to merge
any number of pairs of programs without having to reRUN the MER
program each time.

Merge will add on PROG 1 to PROG 2 regardless of the line
numbers of the two progranms. The result could be that a routine
is joined to the end of PROG 2 that has the same line numbers as
PROG 2 or some part of PROG 2. This is an opportunity to get two
or more programs to reside in program memory simultanecusly.
With the proper POKEs to start of program pointer you céan then
RUN the program of your choice.

LLISTing for MERge :-

10 FORR=31273T031354:READA: POKEK, A:NEXT

20 POKE30862,41:POKE30863, 122

30 DATA175,42,249, 120, 17,233, 122,237,82,68,77,237,67,0, 114,33

40 DATA233,122,17,2,114,237,176,33,71, 122,34, 142, 120,201,237

50 DATA91.249,120,27,27,107,98,237,75,0,114,9,34,248, 120

60 DATA33,2,114,237,176,33,41, 122,34, 142, 120, 175, 17,233, 122,98
70 DATA107, 190,35, 32,2, 190,200, 35, 35, 35, 190, 32,252, 35,235, 115,35
80 DATA114,24,235

(C13 COPYRIGHT 1is retained by ROBERT QUINN on the series
UNDERSTANDING YOUR VZ.

