
LEVEL II
ROM
REFERENCE
MANUAL

By Edwin Paay

MICRO-8O PRODUCTS

WHO SHOULD BUY THIS MANUAL?

This manual is primarily intended for the Level II user who is interested in writing machine
language programs, whatever his level of experience. Used in conjunction with reference texts
on z 80 assembly language programming, it will enable the novice machine language programmer
to quickly and simply make his Level II machine perform useful functions in machine language. On
the other hand, the experienced machine language programmer who uses this manual will find he
is writing shorter, more elegant programs to achieve the desired result.

The BASIC programmer too, will find this manual helpful. It will give him a much better
understanding of the way in which his BASIC programs use the computer's memory space and will
help him write faster, more compact programs in BASIC.

In short, if you use a Level II computer, then you need the LEVEL II ROM REFERENCE
MANUAL.

** ** ** ** * * * * ** **

COPYRIGHT (C) 1980 Edwin R Paay and MICRO-80 PRODUCT
All rights reserved. No part of this manual may be reproduced, stored in a retrieval system or
transmitted in any form or by any means including photocopying, electronic, mechanical or
otherwise without written permission from the publisher.

The proprietary rights to the Level II BASIC interpreter, which is the subject of this manual, are held
by MICROSOFT. The author and publisher of this manual are in no way attempting to infringe these
rights. The purpose of the LEVEL II ROM REFERENCE MANUAL is to assist users of LEVEL II
microcomputers in using and understanding their machines.

*** SPECIAL NOTICE ***

The author and MICRO-80 PRODUCTS assume no liability with respect to the use of this
publication nor any damages arising from the use of any information contained herein. This LEVEL
II ROM REFERENCE MANUAL is sold in an "as is" condition and is not represented as being free
from errors.

PRODUCED IN AUSTRALIA
by

MICRO-80 PRODUCTS
P.O. BOX 213 GOODWOOD SA 5034

PRINTED BY THE SHOVEL & BULL PRINTERS,' 312A UNLEY ROAD, HYDE PARK, SOUTH AUSTRALIA. 5061

***** TABLE OF CONTENTS *****
Page

INTRODUCTION 1

** PART ONE **
Level II ROM map 2
Reserved RAM and Device addresses 23

** PART TWO **
Arithmetic 31
Table 1 - Organisation of ACC and AACC 32
Table 2 - Arithmetic routines 34
Table 3 - Arithmetic functions and number conversion 35
Data Movement 36
Table 4 - Data movement 37
Compare and Test Routines 38
Table 5 - Compare and test routines 39
Data conversion routines 41
Table 6 - Conversion logic 42
Input Routines 43
Table 7 - Character input routines 44
String Output Routines 45
Table 9 - Single byte output 46
Table 10 - String output routines 47
Demonstration Program - Input, Output & arithmetic routines 48
Tape I/O Routines 49
Demo. Tape I/O routine 49
Table 11 - Tape I/O and control 50
Variable Organisation and Variable Locating Routines 51
Table 12 - Special purpose routines 52
Variable Organisation 53
Error Routines 54
Table 13 - Error routine entry points 55
Video Control 56
Table 14 - Video control routines 56
Graphics 57

Continued

***** TABLE OF CONTENTS (cont.) *****
Page

Keyboard Memory 59
DOS Link Addresses 61
Intercept addresses 62
Miscellaneous - Table 15 63
Data and Tape Format 64
BASIC program/tape format 64
System tape format 65
Format of a source file from EDTASM 65
Data format for files created with"PRINT#-l" 66
Addresses used by EDTASM 66

Initializing Machine Language Subroutines 67

Using Machine Language programs on Disk Systems 68

Port 255 69

Appendix 1 - Demonstration Program using DOS Link Area 70
Appendix 2 - Conversion Table 72

* * * * * * * * * * * * * * *

1

***** INTRODUCTION *****

The BASIC interpreter in the Level II microcomputer is a machine language program which resides
in a Read Only Memory (ROM) from address 0000 Hex to address 2FFFHex. The detailed contents
of this ROM have never been officially revealed. True, some of the manuals explain how a few of
the routines in ROM can be used in your own machine language programs but, until now, the vast
bulk of this very clever 12K interpreter has been a mystery.

This manual reveals all. All the useful and useable ROM routines are explained. The secrets of the
reserved memory are laid bare and best of all, there are sample programs to illustrate how you can
make use of these routines to simplify and enhance your own machine language programs.

The LEVEL II ROM REFERENCE MANUAL is in two parts. Part 1 contains an extended memory
map which lists all useable routines and shows where the various BASIC command routines are in
ROM. This serves as a useful reference to specific addresses in ROM and also as an adjunct to a
disassembled listing.

Part 2 explains in detail how to use the ROM routines. It contains tables indexed by function so
that you can quickly locate the routine which is best suited to your particular purpose. It also
contains sample programs which illustrate how the routines may be used in your own machine
language programs. Part 2 also contains discussion on the ACC, AACC and NTF which are quite
often mentioned in the text. It is recommended that these sections be read first so that the reader
understands the meaning of these terms. (Note that the A register contained in the CPU is always
 referred to as A register and never as accumulator. This is done to avoid confusing it with the
area in memory referred to as ACCumulator).

In preparing this manual, we have assumed that our readers understand the Z-80 instruction set and
have some experience of programming with the aid of an editor/assembler. This manual is in no way
a substitute for a good text on Z-80 assembly language programming, rather, it will help the Level
II user to obtain the most from such texts.

2

***** LEVEL II ROM MAP *****

MEMORY COMMENTS
LOCATION

0000-0002 Disables the interrupts, clears the A register, then jumps to initialisation routine at
674H.

0008 (RST 8H) Jumps to 4000H. 4000H passes control to 1C96H. This routine is used
for scanning strings. It compares the character pointed to by the HL register pair with
the character pointed to by the return address on the top of the stack (Note that a RST
instruction is in effect a CALL and places a return address on the stack) formula:
(HL)=((SP))? If they are not equal an SN ERROR will result; if they are equal then
the return address on the stack will be incremented to bypass the test character and
control will be passed to RST 10H logic. RST 8H is used to look for expected
characters in a string and then return with (HL) pointing to the next non-blank
character. (see RST l0H) (BC and DE registers unaffected.). This routine can be
used by CALLing 1C96H or RST 8H.

0010 (RST l0H) jumps to 1D78H through 4003H. This routine INCrements HL and tests
the characters pointed to by the HL register pair. It will bypass any spaces and
CHAR'S 9 and 10 (shifted left and down arrows respectively). Upon return from this
routine HL will point to the next non-blank character; the carry flag will be SET if
HL is pointing to a numeric ASCII character and the Z flag will be SET if the
character pointed to happens to be zero (ASCII 30H) or 3AH (":"). (BC and DE
registers are unaffected) This routine can be used by CALLing 1D78H or RST l0H.

3

0018 (RST 18H) Jumps to lC90H through 4006H. This routine can be called by using
RST 18H or CALL lC90H. It compares two 16 bit values in HL and DE and sets the
S and Z flags accordingly (they are set in the same way as for a normal 8 bit CP). All
registers are unchanged except for A.

0020 (RST 20H) This routine jumps to 25D9H through 4009H. If the NTF=8 then
C=RESET or else C=SET, Z flag will be SET if NTF=3 (S flag is valid also.). After
execution of RST 20H or CALL 25D9H, A will contain the value NTF-3, all other
registers are unchanged. (The NTF will be discussed in the arithmetic section.)

0028 (RST 28H) Jumps to 400CH which contains C9H (RET) under Level II BASIC.
This vector is only used by Disk BASIC. It is called by the BREAK key routine, and
can be used to intercept the BREAK key logic.

002B Keyboard scanning routine. After CALLing 2BH, the A register will contain the
ASCII value for the key that was pressed. The A register will contain 00H if no key
was pressed at the time. Apart from the AF register pair the DE register pair is also
used by the routine.

0030 (RST 30H) This location passes control to 400FH which contains a RET (C9H)
under Level II. This location is only used by a Disk system.

0033 Character print routine. A CALL 33H will print a character at the current cursor
position. The A register must contain the ASCII code for the character or graphics
figure that is to be printed before CALLing this routine. The DE register pair is used
by the routine.

4

0038 (RST 38H) This location will pass control to 4012H. This location is only used by a
Disk system.

003B Character LPRINT routine. Same as 33H but outputs to line printer. (Contents of A
register will be printed.)

0049 Character input routine. This routine is the same as

2BH except that it will not return until a key is pressed, which often makes it often
more useful than 2BH. Character is returned in the A register (AF and DE used).

0050-005F This is a table of control characters used by BASIC.
50 Carriage Return (ENTER)
52 CLEAR
54 BREAK
56 Up Arrow
58 Down Arrow
5A Left Arrow
SC Right Arrow
SE SPACE

0060 This is a delay loop. The BC register pair is used as the loop counter. The duration
of the delay, in microseconds, is the value of BC times 14.65. Register A is used.

0066 This is the location to which program control jumps when the RESET button is
pressed (Non Maskable Interrupt address).

5

0069-0074 This part of the initialization routine checks to see if a disk drive is connected. If so,
it will jump to 00H. (This is why the reset button will reinitialize DOS.)

0075 This is part of the Level II initialization procedure. It moves a block of memory
from 18F7H to l9lEH up to 4080H to 40A7H. (reserved RAM. area)

008B This loads 40A7H with the I/O buffer location address

41E8H. (40A7H is the I/O buffer pointer and can be changed to relocate the buffer.)

0091-0104 The rest of the initialization routine. Asks MEMORY SIZE ?, sets the memory
pointers accordingly and prints RADIO SHACK LEVEL II BASIC , then it jumps to
lAl9H which is the entry point for the BASIC command mode.

0105 The "MEMORY SIZE" message is located here.

0111 The "RADIO SHACK LEVEL II BASIC" message is located here.

012D This is the entry point for L3 ERROR.

0132, 0135, 0138 These are the entry points for the POINT, SET and the RESET
commands in that order, see Part 2 for more data on the graphics routines.

0150 This is a suitable entry point for the graphics routines. (see Part 2)

01C9 A CALL lC9H will clear the screen. (CLS)

6

01D3 This is part of the RANDOM routine which takes a value out of the REFRESH
register, stores it in location 40ABH and then returns.

01D9, 01E3 and 01ED Output a pulse to the cassette recorder.

01DF, 01E9 and 01F3 Delay loop between pulses.

01F8 Turns cassette recorder off.

0212 CALL 212H will define which cassette is to be used. Put 00H in A register to turn
On cassette 1, or O1H to turn on cassette 2. (BC,DE and HL are unchanged)

022C Blinks asterisk in top right corner. This can be used as a subroutine. AF register
pair is used.

0235 This routine will read a byte from tape. A CALL 235H will return with the byte read
from tape in the A register BC, DE and HL are unchanged.

0241 Routine waits for timing pulse, and then performs a timing loop. When the time is
up it tests the tape for a bit, which will be "1" if present and "0" if not. A CALL
241H is used by 235H eight times to input one byte.

0264 Writes the byte in the A register to tape. BC, DE and HL are unchanged by a CALL
264H.

0287 Writes tape leader and the A5H sync byte. DE and HL are unchanged.

7

0296 Reads from tape until the leader is found, then keeps going until it is bypassed and
the sync byte (ASH) is found, when it returns. DE, BC and HL are unchanged by
this.

029F Places the double asterisk in the right top corner to show that the sync byte has been
found.

02B5 This location passes control to the routine used by the BASIC command SYSTEM.

0314 This routine reads two bytes from tape (providing that the tape is already running)
and puts them in the HL register pair. It is used by the SYSTEM routine to read the
last two bytes on tape which give the entry point. A JP (HL) can then be executed to
jump to the location specified, when used for this purpose. Only HL is used by this
routine.

032A This is a general purpose output routine which outputs a byte from the A register to
video, tape or printer. In order to use it, the location 409CH must be loaded with -1
for tape, 0 for video or 1 for the line printer.

033A A Print routine which performs the same function as 33H except that it doesn't
destroy the contents of the DE register pair. This means that all the general purpose
registers are saved, which is often desirable.

035B Here is the routine to simulate the INKEY$ function. It performs exactly the same
function as 2BH but it restores all registers, whereas 2BH destroys the contents of the
DE register pair. This makes 35BH more useful than 2BH.

8

0361 This is one of the general purpose input routines (see 5D9 and 1BB3 also). This
routine inputs a string from the keyboard, up to a maximum of 240 characters (F0H),
and echoes them to the screen. It puts this data into a buffer located at the address
pointed to by the buffer pointer at 40A7H. (e.g. If 40A7H contains 5000H the data
will be stored from 5000H onwards). The string is terminated with a zero byte. The
program returns from this routine as soon as the ENTER key has been pressed.
When it does so, HL contains the start address of the input string and B contains the
length of the string. (RST 10H can be used to make HL point to the first character of
the string, if required.)

039C This is the LPRINT routine. All registers are saved. The byte to be printed should be
in the A register.

03E3 This is the keyboard driver. It scans the keyboard and converts the bit pattern
obtained to ASCII and stores it in the A register.

0458 This is the video driver. The character to be displayed should be in the C register.
This routine handles scrolling etc.

04C3 Changes display to 64 character mode (A register is used).

04F6 Changes display to 32 character mode. A and HL registers used.

057C Clear to end of frame routine. To use this routine load the HL register pair with the
screen address from which you want the erasing to start. The DE and A registers are
used.

9

058D LPRINT driver routine, handling printer I/O etc. The character to be printed should
be in register C.

05D9 This is the most basic of the string input routines and is used by the two others
(1BB3H and 0361H) as a subroutine. To use it, load HL with the required buffer
address and the B register with the maximum buffer length required. Keyboard input
over the specified maximum buffer length is ignored, and after pressing the
(ENTER) key it will return with HL containing the original buffer address and B
with the string length.

06CC This is an alternative re-entry point into BASIC. A JP 6CCH is often better than a
jump to lA19H as the latter sometimes does strange things to any resident BASIC
program.

070B Single-precision addition (ACC=(HL)+ACC) involving a buffer pointed to by the
HL register pair and the ACC (see arithmetic section in Part 2 of this manual for
information on the ACC). This part of the program loads the BCDE registers with
the value from the buffer, then passes control to 716H.

0710 Single-precision subtraction (ACC=(HL)-ACC). This loads the BCDE registers with
the value from (HL), then passes control to 713H.

0713 Single-precision subtraction (ACC=BCDE-ACC). The routine actually inverts the
ACC and adds it to the contents of the BCDE registers which, in effect, is a
subtraction. The result will be stored in the arithmetic work area (ACC).

10

0716 Single-precision addition (ACC=BCDE+ACC). This routine adds two single-
precision values and stores the result in the ACC area.

07B2 This is the OV ERROR entry point.

0809 LOG routine, (ACC=LOG (ACC)). This routine finds the LOGarithm of the value in
the ACC area.

0847 Single-precision multiplication (ACC=BCDE*ACC).

08A2 Single-precision division (ACC=BCDE/ACC). If ACC=0 a " /0 ERROR " will
result.

0955 Checks if ACC=0. If so, the Z flag will be set.

0977 ABS routine (ACC=ABS(ACC)) input and output can be integer, single-precision or
double-precision, depending on what is placed in the NTF (NTF=2, 4 or 8). (For a
definition of NTF, see Part 2.)

0982 NEGATE function for single-precision values (ACC=-ACC). Only BC and DE are
saved.

098A SGN function (ACC=SGN(ACC)). After execution, NTF=2 and ACC=-l, 0 or 1
depending on sign and value of ACC be fore execution.

0994 This routine checks the sign of the ACC. NTF must be set. After execution A
register=00 if ACC=0, A=01 if ACC > 0 or A=FFH if A < 1. The Flags are also
valid.

09A4 Loads Single-precision value from ACC to stack ((SP)=ACC). To retrieve this
value, POP BC followed by POP DE. A, BC and HL are unchanged by this
function.

11

09B1 This routine loads four bytes from the location pointed to by HL, into the ACC.
(ACC=(HL)).

09B4 This routine loads the ACC with the contents of the BC and DE register pairs.
(ACC=BCDE). BC and HL remain unaltered.

09BF This routine is the opposite of the 9B4H routine. It loads four bytes from the ACC
(single-precision) into the BC and DE register pairs. (BCDE=ACC). A is
unchanged.

09C2 This routine will load the BCDE register pairs with four bytes from the location
pointed to by HL. (BCDE=(HL)),. With these types of data movements, the E
register is loaded with the LSB and the B register. with the MSB.

09CB This routine is the opposite of the 9B1H routine. It loads four bytes from the ACC to
the memory location pointed to by HL. ((HL)=ACC).

09CE Data move routine. This moves four bytes from the location pointed to by DE into
the location pointed to by HL. ((HL)=(DE)).

09D2 Data move routine. The location pointed to by DE is loaded with bytes from the
location pointed to by HL. The number of bytes moved is determined by the value in
the NTF. ((DE)=(HL)).

09D3 This routine is similar to 9D2H above. The only difference is that it moves data in
the opposite direction. ((HL) = (DE)).

12

09D6 This routine is the same as 9D3H except that the number of bytes moved depends on
the value in the A register ((HL) = (DE)).

09D7 This routine is the same as 9D6H except that the number of bytes shifted is
determined by the value in the B register ((HL)=(DE)).

09F4 This routine is used by the double-precision logic. It moves a number of bytes (the
number depending on the value stored in the NTF) from the AACC into the ACC.
((ACC)=(AACC)).

09FC This is the opposite of 9F4H. ((AACC)=(ACC)).

0A0C Single-precision compare. Compares the ACC with the contents of BCDE registers.
 After execution of this routine, the A register will contain: A=0 if ACC=BCDE,
A=1 if ACC>BCDE or A=FFH if ACC<BCDE.

0A39 Integer compare. Compares HL with DE. After execution, A=0 if HL=DE, A=1 if
HL>DE or A=FFH if HL<DE. The S and Z flags are valid.

0A4F Double-precision compare. Compares the ACC with the AACC. After execution the
A register will contain: A=0 if ACC=AACC, A=1 if ACC > AACC or A=FFH if
ACC <AACC. S and Z flags are valid.

0A78 Double-precision compare. This compare is the opposite of the A4FH compare. It
compares the AACC with the ACC. (Remember that a compare is actually a
subtraction that is never executed therefore a compare can be done in two ways with
the same values. (A-B and B-A)). The results are the same as the A4FH routine.

13

0A7F CINT routine. Takes a value from ACC, converts it to an integer value and puts it
back into the ACC. On completion, the HL register pair contains the LSB of the
integer value, and the NTF contains 2 (Integer=2). If NTF=3 (string) a TM ERROR
will be generated and control will be passed to BASIC.

0A9A This is the routine that returns the value in the HL register pair to the BASIC
program that called it. In effect it moves the content of HL into the ACC
(ACC = HL)

0A9D Set NTF to Integer (2). (A=used)

0AB1 CSNG routine. Takes value from ACC and converts it to single-precision. The result
is put in ACC and NTF contains 4.

0ADB CDBL routine. Takes a value from ACC and converts it to double-precision. The
result will be in ACC and NTF will be 8.

0AF4 This routine calls 20H (RST 20H) and returns if NTF=3 (string) else if NTF is not 3
then it generates a TM ERROR. BC, DE, and HL are saved.

0AF6 This is the entry point for the TM ERROR.

0AFB This routine will reset the BC and DE register pairs if the A register contains 0.
(XOR A before calling this routine).

0B26 FIX routine. Takes a value from ACC and converts it to an integer value. The result
will be in ACC. NTF will be 2 if value is smaller than 32767 else it will be 4. An
error will be generated if NTF=3 (string).

14

0B37 Same as FIX (B26H)

0BD2 Integer addition (ACC=DE+HL). After execution NTF=2, or 4 if overflow has
occurred, in which case the result in the ACC will be single-precision. The result is
returned in both the ACC and the HL register pair.

0BC7 Integer subtract. (ACC=DE-HL) The result is returned in both the ACC and the HL
register pair.

0BF2 Integer multiply. (ACC=DE*HL) (rules same as above).

0C51 Negate HL routine. This routine changes the sign of the HL register pair and stores it
in the ACC. (HL=ACC=-HL) The result is returned in both the HL register pair and
the ACC.

0C70 Double-precision subtraction (ACC=ACC-AACC).

0C77 Double-precision addition (ACC=ACC+AACC).

0DAl Double-precision multiplication (ACC=ACC*AACC).

0DE5 Double-precision division (ACC=ACC / AACC).

0E65 This routine converts an ASCII string (pointed to by HL) to a double-precision value
and stores it in the ACC. The NTF is fixed accordingly. The string must be
terminated with a comma or zero byte. Note that the AACC is destroyed in the
process and that HL will point to the delimiter at the end of the string. The string
formats must follow the same rules as in BASIC.

15

0E6C This routine is the same as E65H above, except that it fixes the ACC and NTF to the
smallest possible number type.

0FBD Conversion routine. Converts the value from the ACC to an ASCII string delimited
with a zero byte. The number type can be any of Integer, single or double-precision.
 After execution HL will be pointing to the start of the string. The ACC and AACC
are destroyed by the process.

13E7 SQR routine. Single-precision values only should be used. (ACC=SQR (ACC)).

1439 EXP routine. Single-precision only. (ACC=EXP (ACC)).

14C9 RND routine. Integer, single or double-precision. Output will be single-precision.
(ACC=RND (ACC))

1541 COS routine. Single-precision only.(ACC=COS (ACC)).

1547 SIN routine. Single-precision only.(ACC=SIN (ACC)).

15A8 TAN routine. Single-precision only.(ACC=TAN (ACC)).

l5BD ATN routine. Single-precision only.(ACC=ATN (ACC)).

197A OM ERROR entry point.

1997 SN ERROR entry point.

199A /0 ERROR entry point.

199D NF ERROR entry point.

19A0 RW ERROR entry point.

16

1A19 Re-entry into BASIC command mode entry point. (see 6CCH also).

lAF8 This routine fixes the line pointers in a BASIC program. This is useful, for instance
for a renumber program which has to move BASIC program lines from one location
in memory to an other, which means that the line pointers would no longer be valid.
This routine will fix them. Registers A, HL and DE are used.

1B2C This routine searches a BASIC program for a BASIC line with a line number
matching the value in the DE register pair. Therefore, to use this routine, the
required line number must be placed in the DE register pair. When a match is found,
this routine sets the carry flag; the BC register pair points to the start of the required
line, and the HL register points to the start of the next line. HL, AF and BC are used.

1B49 Entry point of the NEW command.

1BB3 This is the last of the general purpose input routines. This routine functions
identically to the 361H routine with the exception that it prints a "?" on the screen
(like INPUT does with BASIC) before allowing input from the keyboard.

1C90 The RST 18H code is located here. (Unsigned compare (HL-DE))

1C96 The RST 8H code is located here.

1CA1 FOR entry point.

17

1D5A The actual BASIC interpreter is located here. HL should be pointing to the BASIC
text to be interpreted.

1D78 The RST 1OH code is located here.

1D91 RESTORE logic is located here.

1DA9 STOP entry point.

1DAE END entry point.

1DE4 CONT entry point.

1DF7 TRON entry point.

1DF8 TROFF entry point.

1E00 DEFSTR entry point.

1E03 DEFINT entry point.

1E06 DEFSNG entry point.

1E09 DEFDBL entry point.

1E3D This routine tests the value pointed to by the HL register pair and sets the C flag if it
is an ASCII letter value. Otherwise it resets the C flag.

1E4A FC ERROR entry point.

18

1E5A Converts numeric ASCII string pointed to by the HL register pair, to HEX and places
the result in the DE register pair. After execution HL points to the delimiter and the
A register contains the delimiter value. The Z flag is set if the delimiter equals 00 or
3A. Z is reset if any other delimiter is used. If there is no string at the location
pointed to by HL the routine will return a MO ERROR (missing operand). If the
result in the DE register pair exceeds FFFFH an OV ERROR (overflow) results.

1E7A Location of CLEAR logic.

1EA3 RUN initialization logic.

1EB1 GOSUB entry point.

1EC2 GOTO entry point.

1EDE RETURN entry point.

1EEC RG ERROR entry point.

1F05 DATA entry point.

1FF4 ERROR entry point.

2003 UE ERROR entry point.

2039 IF entry point.

2067 LPRINT logic.

206F PRINT logic.

2376 PRINT @ logic.

19

2137 TAB logic.

2178 ?REDO message string.

219A INPUT logic.

21EF READ logic.

2286 ?EXTRA IGNORED. message string.

22B6 NEXT logic.

2337 This routine evaluates a BASIC expression pointed to by the HL register pair and
stores the result in the ACC. The expression must be terminated with zero byte,
comma, right bracket or colon. After execution, HL will point to the delimiter and,
in the case of string expressions, the ACC will contain the address of the first of
three bytes that contain string length and string address. Note that the stack is used
frequently and the machine should be formatted for RUN mode in order to use this
routine. (See sample program in Appendix 1 for an application of this routine).

2490 Integer divide. (ACC=DE / HL) Result will be in single-precision (NTF=4) and will
be in the ACC.

24CF ERR logic.

24DD ERL logic.

24EB VARPTR logic.

20

2540 This routine loads a variable to the ACC and sets the NTF. The HL register pair
must point to the ASCII variable name. After execution the HL register pair will
point to the character following the last character of the variable used. The value of
the variable will be loaded in the ACC. For strings however (NTF=3), the ACC will
contain the address of the first three bytes which contain the string length and string
address (see Level II BASIC manual). Also note that if the variable cannot be found
it will be created and given a value of zero.

25D9 The RST 20H code is located here.

25F7 OR logic.

25FD AND logic.

2608 DIM logic.

260D This is the variable location and creation logic. This routine will return the address of
a variable in memory or create it if it is not found. In order to use this routine, the
HL register pair must point to the variable name (ASCII). Then, after execution, HL
will point to the character following the variable name and the location of the
variable will be returned in the DE register pair. For integer, single or double-
precision (NTF=2, 4 or 8) the address returned in DE will be the same as for the
VARPTR command under BASIC. (see Level II BASIC manual on VARPTR) For
strings (NTF=3) however the address returned in DE will point to the first of three
bytes containing the string length and string address.

21

273D BS ERROR entry point.

27C9 MEM logic.

27D4 FRE logic.

27F5 POS logic.

27FE USR logic.

2831 ID ERROR entry point.

2836 STR$ logic.

28A1 ST ERROR entry point.

28A7 This is a general purpose output routine. It will output data to the display, printer or
cassette, depending on the contents of 409CH. (0=video, -1=tape, 1=printer). The
address of the first character in the string to be output must be in the HL register pair,
and the string must end with a zero byte or a quote (22H).

29D7 This routine sets the HL register pair to point to the data in the ACC.

2A03 LEN logic.

2A0F ASC logic.

2A1F CHR$ logic.

2A2F STRING$ logic.

2A61 LEFT$ logic.

22

2A91 RIGHT$ logic.

2A9A MID$ logic.

2AC5 VAL logic.

2AEF INP logic.

2AFB OUT logic.

2B01 STEP logic.

2B05 This routine takes the value from the ACC, converts it to an integer value and places
the result in the DE register pair. The Z flag will be set if the result in DE is smaller
than or equal to 255 (FFH). (DE = INT (ACC))

2B1C This routine converts a numeric ASCII string pointed to by the HL register pair into
a hexadecimal value and places the result in the A register. If the result is larger than
255 (FFH) then an FC ERROR (Illegal function call) will be generated. After
execution the HL register pair will point to the delimiter. If the delimiter is a zero
byte or a colon (3AH) then the Z flag will be set. Any other delimiter will cause the
Z flag to be reset.

2B29 LLIST logic.

2B2E LIST logic.

2BC6 DELETE logic.

2BF5 CSAVE logic.

23

2ClF CLOAD logic.

2CAA PEEK logic.

2CA5 "BCD" message string.

2CB1 POKE logic.

2CBD USING logic.

2E60 EDIT logic.

2F0A This routine prints a string of text to the display, printer or tape. it uses 32AH to do
this (see 32AH routine for further rules), HL must point to the first character of the
string. (409CH must be set before calling this routine, see 32AH). String must be
delimited with a zero byte.

* * * * * * * * * * * * * * * *

**** RESERVED RAM AND DEVICE ADDRESSES ****

LOCATION USE OR COMMENTS

3000-37DD This area is set aside for future DMA devices, there is nothing here at all. This area
can be used for custom interfaces.

37DE DOS status address. These DOS locations are not memory but communication
addresses which communicate directly or indirectly with the floppy disk controller
IC. (for more information on the floppy disk controller see the FD 1771 floppy disk
controller data sheet from WESTERN DIGITAL)

24

37DF DOS communication data address.

37E0 Interrupt latch address.

37E1 Disk drive select latch address for drive 0.

37E2 Cassette drive latch address.

37E3 Disk drive latch address for drive 1.

37E4 Cassette select address defined by 212H.

37E5 Disk drive latch address for drive 2.

37E7 Disk drive latch address for drive 3.

37E8 Line printer port address.

37EC-37EF Floppy disk controller addresses.

3801-3880 Keyboard area. (see special section on keyboard for more information).

3C00-3FFF Video display memory.

4000 Jump vector for RST 8H.

4001 Jump vector for RST 10H.

4006 Jump vector for RST 18H.

4009 Jump vector for RST 20H.

400C Jump vector for RST 28H.

400F Jump vector for RST 30H.

4012 Jump vector for RST 38H.

25

KEYBOARD DATA CONTROL BLOCK

4015 Device type. (If this location is loaded with zero a jump to 4033H will occur every
time the keyboard is scanned)

4016 Driver address. The contents of this address and the next one contains the address to
which the key board scanning routine will jump each time it scans the keyboard.

VIDEO DISPLAY DATA CONTROL BLOCK

401D Device type.

401E Driver address.

4020 Location of cursor in video memory. (two byte address) .

LINE PRINTER CONTROL BLOCK

4025 Device type.

4026 Driver address. If this driver address is changed to the driver address of the video
control block all LPRINT commands will print to the display instead of the line
printer, and vice versa.

4028 Number of lines per page.

4029 Current line number being printed.

26

4033 A jump to a machine language routine can be placed here. (see section on program
intercept and 4015H)

4036-403C Small buffer for keyboard decoding routine (used for keyboard rollover).

403D Print size flag. (0=64 characters F8=32 characters.)

4041-4046 TIME$ storage area for 25 ms counts, seconds, minutes, hours, year, day and month
respectively.

408E Entry pointer for USR routines.

4093 INPut routine.

4094 Port number.

4096 OUT routine.

4097 Port number.

4099 INKEY$ storage.

409A Error code for RESUME.

409B Printer carriage position.

409C Device type flag (0=video, 1=printer, -1=tape)

409D Used by PRINT#.

40A0 Start of string space pointer.

40A2 Current line being processed by BASIC.

40A4 Start of BASIC program location.

27

40A6 Line cursor position, used by TAB.

40A7 I/O buffer pointer.

40AA LSB of seed number for RND.

40AB NSB (Next most Significant Byte) of seed. (see lD3H)

40AC MSB of seed.

40AF NTF this is the Number Type Flag. This address tells BASIC what type of number is
contained in the ACC. (2=integer, 3=string, 4=single and 8=double-precision.)

40B1 Top of BASIC memory pointer.

40B3 String work area pointer.

40B5 Usual string work area.

40D6 String space pointer (current location).

40DC Used by DIM.

40DE Used by PRINT USING.

40DF Entry point storage for SYSTEM programs.

40E1 AUTO flag (0=auto off, else auto on)

40E2 Current line number (used by AUTO)

40E4 Increment size for AUTO.

40E6 Points to the location in memory of the BASIC program material which the
interpreter is currently processing.

28

40E8 Stack pointer.

40EA Used by RESUME.

40EC EDIT line number.

40EE Used by RESUME.

40F5 Last line executed.

40F7 Used by CONTinue.

40F9 Simple variables pointer and end of BASIC program pointer.

40FB Array pointer.

40FD Free space pointer.

40FF Data pointer.

4101-411B Variable type declaration table. 2=INT 3=String, 4=single, 8=Doub1e.

411B TRON flag 0=TROFF.

411D-4124 ACC (ACCumulator area). See arithmetic section for more information.

4127-412E AACC (Auxiliary ACCumulator area).

4130 Line number work area pointer.

29

DOS COMMAND ENTRY POINT TABLE

(for actual entry points, see map in Part 2 of this manual)

4152 CVI

4155 FN

4158 CVS

415B DEF

415E CVD

4161 EOF

4164 LOC

4167 LOF

416A MKI$

416D MKS$

4170 MKD$

4173 CMD

4176 TIME$

4179 OPEN

417C FIELD

417F GET

30

4182 PUT

4185 CLOSE

4188 LOAD

418B MERGE

418E NAME

4191 KILL

4194 &

4197 LSET

419A RSET

419D INSTR

41A0 SAVE

41A3 LINE

41A6 Error intercept used by Disk BASIC to intercept errors so that they can be printed out
in full.

41A9 Used by Disk BASIC to support its additional USR functions.

4lBB Intercept for program initialization.

41E8-42E8 I/O Buffer area.

42E9 Level II BASIC programs start here.

6A24 Disk BASIC programs start here.

***** PART 2 *****

In this part of the manual, the ROM routines which were described in numeric order in Part 1 are
organized by function in a series of tables. This should enable the user to quickly choose the
most suitable routine for his purpose.

In interpreting these tables, the following points should be considered:

- if a register is not mentioned specifically, then the routine destroys its content

- the addresses given in the Tables are the CALL addresses

Note: There is no Table 8 in this Part. Table 8 was amalgamated with Table 7 during typesetting.

* * * * * * * * * * * * * * * *

31

ARITHMETIC

The arithmetic routines come in three main types: Integer, single or double-precision. Some
information is required to use these routines. First there is the NTF, this is the Number Type Flag.
 It is located at 40AFH in memory and is used by BASIC when it wants to know what type of
number is residing in the ACC area. The NTF will contain 2 if Integer, 4 if single-precision, 8 if
double-precision or 3 if string.

Then there is the ACCumulator area (ACC) this is the area in memory from 411DH to 4124H, (see
table 1). It is used to store values and the results for most of the arithmetic routines. The type of
number contained in the ACC can be determined at any time by testing the NTF. If you are loading
a number in to the ACC manually the NTF must also be set in order to reflect the number type.
Note that the NTF actually contains the data length in all cases except with strings. (discussed later).

Finally there is the Auxiliary ACCumulator (AACC) this is the area 4127H to 412EH in memory,
it is only used by the double-precision arithmetic routines. Note that the ACC and AACC are
changed by data conversion routines but not by compares.

32

TABLE 1
ORGANISATION OF ACC and AACC

ADDRESS INTEGER SINGLE DOUBLE
PRECISION PRECISION

ACC 411DH LSB
411EH LSB
411FH LSB
4120H LSB
4121H LSB LSB LSB
4122H MSB LSB LSB
4123H MSB MSB
4124H EXP EXP

AACC 4127H LSB LSB LSB
4128H MSB LSB LSB
4129H MSB MSB LSB
412AH EXP LSB
412BH LSB
412CH LSB
412DH MSB
412EH EXP

33

In all the values listed in Table 1, the numbers are stored as signed numbers. This means that the
most significant bit in the MSB of the value is used as a sign bit (1 if number is negative or 0 if
positive). The EXPonents are stored in normalized form. 128 is added to the exponent. For more
information see the Level II manual pages 8/8 to 8/10. The BC and DE registers are used extensively
by the single-precision routines as one of the operands, the MSB must be in the B reg. and the LSB
must be in the E reg. (4 bytes total)

When it is necessary to CALL an arithmetic function and one or both of the numbers are of the
wrong type the CINT, CSNG or CDBL routines can be CALLed, these routines are found in Table
3. All arithmetic functions return with the result in the ACC. The integer arithmetic functions
however, return with the result in both the ACC and the HL reg. pair. If overflow occurs on any of
the integer arithmetic functions the result will automatically be a single-precision number. The NTF
can be tested to see if such is the case. If any errors occur during the arithmetic operations, such as
divide by zero, an error message will be printed and control will be passed to BASIC. Finally, make
sure there is enough stack space for the routines to use.

34

TABLE 2.

ARITHMETIC ROUTINES.
ADDRESS OPERATION INPUT OUTPUT OUTP. TYPE
SINGLE-PRECISION.

70BH ACC = (HL) + ACC ACC, (HL) ACC NTF = 4,Single

710H ACC = (HL) - ACC ACC, (HL) ACC NTF = 4,Single

713H ACC = BCDE - ACC ACC, BCDE ACC NTF = 4,Single

716H ACC = BCDE + ACC ACC, BCDE ACC NTF = 4,Single

847H ACC = BCDE * ACC ACC, BCDE ACC NTF = 4,Single

8A2H ACC = BCDE / ACC ACC, BCDE ACC NTF = 4,Single

INTEGER.

BD2H ACC = DE + HL DE, HL ACC, HL NTF = 2, int

BC7H ACC = DE - HL DE, HL ACC, HL NTF = 2, int

BF2H ACC = DE * HL DE, HL ACC, HL NTF = 2, int

2490H ACC = DE / HL DE, HL ACC, HL NTF = 4,Single

DOUBLE PRECISION.
C7OH ACC = ACC - AACC ACC, AACC ACC NTF = 8, dbl

C77H ACC = ACC + AACC ACC, AACC ACC NTF = 8, dbl

DA1H ACC = ACC * AACC ACC, AACC ACC NTF = 8, dbl

DE5H ACC = ACC / AACC ACC, AACC ACC NTF = 8, dbl

Note : all reg's are used.

35

TABLE 3.

ARITHMETIC FUNCTIONS AND NUMBER CONVERSIONS.

ADDRESS FUNCTION INPUT OUTPUT
809H LOG (ACC) ACC, NTF=4 ACC, NTF = 4
977H & ABS (ACC) ACC, NTF=2,4 or 8 ACC, NTF=2,4 or 8
982H $# - (ACC) ACC, NTF=4 or 8 ACC (Negate)
98AH SGN (ACC) ACC, NTF=2,4 or 8 ACC= -1,O,l,NTF=2
A7FH CINT (ACC) ACC, NTF=2,4 or 8 ACC and HL, NTF=2
AB1H CSNG (ACC) ACC, NTF=2,4 or 8 ACC, NTF=4
ADBH CDBL (ACC) ACC, NTF=2,4 or 8 ACC, NTF=8
B26H * FIX (ACC) ACC, NTF=2,4 or 8 ACC, NTF=2 or 4
B37H * INT (ACC) ACC, NTF=2,4 or 8 ACC, NTF=2 or 4
C5lH # - (HL) HL ACC and HL, NTF=2
13E7H SQR (ACC) ACC, NTF=4 ACC, NTF=4
1439H EXP (ACC) ACC, NTF=4 ACC, NTF=4
14C9H RND (ACC) ACC, NTF=2,4 or 8 ACC, NTF=4
1541H COS (ACC) ACC, NTF=4 ACC, NTF=4
1547H SIN (ACC) ACC, NTF=4 ACC, NTF=4
15A8H TAN (ACC) ACC, NTF=4 ACC, NTF=4
15BDH ATN (ACC) ACC, NTF=4 ACC, NTF=4
2B05H % INT (ACC) ACC, NTF=2,4 or 8 DE

* If the operand is smaller than 32767 then NTF = 2.

$ BC and DE unchanged.

These routines change the sign of the operand.

& Remember that NTF=2 is integer, NTF=2,4 or 8 means that the routine is Suitable for integer,
single and double-precision.
For the above routines, the user must supply arguments which stay within the range allowed by
BASIC for these functions. Check too, that the arguments have the correct number type before a
particular function is called as some of the functions do not check the NTF and errors could
result.

% The Z flag is set if the result in DE is equal to or smaller than 255 (FFH).

36

DATA MOVEMENT

This section handles the movement of data to and from memory and ACC etc. Data moved into the
ACC, AACC and BCDE reg.'s will be of the correct format only if the format of the source was
correct. Some of these routines are suitable to move data from a variable created by BASIC into the
BCDE registers or ACC, so that the data can be operated on by a machine language program. All
usable routines are shown in Table 4. The column labeled "ADDRESS" is the call address, the
column labeled "FROM" is the source (usually a register pair is used to point to a location in
memory) and the column labeled "TO" is the destination. The column labeled "BYTES MOVED"
shows the number of bytes moved or the register whose value determines the number of bytes which
will be moved. If applicable, the limits are also shown. Finally, the column labeled "POINTERS"
shows the way in which the pointers are changed after execution, and/or which registers are
unchanged (saved) by the operation. (N/A = not applicable)

37

TABLE 4

DATA MOVEMENT

ADDRESS FROM --> TO BYTES MOVED POINTERS

9A4H * ACC (SP) 4 A,BC,HL saved

9B1H (HL) ACC 4 HL = HL + 4

9B4H BCDE ACC N/A BC,HL saved

9BFH ACC BCDE N/A N/A

9C2H (HL) BCDE 4 HL = HL + 4

9CBH ACC (HL) 4 HL = HL + 4

9CEH (DE) (HL) 4 HL = HL + 4
DE = DE + 4

9D2H (HL) (DE) NTF HL = HL + NTF
DE = DE + NTF

9D3H (DE) (HL) NTF HL = HL + NTF
DE = DE + NTF

9D6H (DE) (HL) A HL = HL + A
A =< 256 DE = DE + A

9D7H (DE) (HL) B HL = HL + B
B =< 256 DE = DE + B

9F4H AACC ACC NTF N/A

9FCH ACC AACC NTF N/A

A9AH HL ACC N/A N/A

* The value is pushed on the stack, a POP BC, POP DE can be used in succession to retrieve
the value. In case of an integer, the value will then be in the DE req. pair.

38

COMPARE & TEST ROUTINES

It is often necessary to compare certain numbers or strings with one another or to test a memory
location or register to find the type of data it contains. For instance, while searching for a particular
number or string in memory. These types of routines can become quite complicated if they have to
be written from scratch. This section helps by listing all the compare routines in ROM which can
be used.

In Table 5, the column "ADDRESS" is the CALL address, the column headed "FUNCTION" shows
the formula for the function performed. Unless stated otherwise, all registers are used however, no
memory locations are altered by the compare routines presented here. Remember also, that a
compare is a subtraction that is actually never performed as far as the register contents are concerned.
 The flags are set or reset however, in the same way as though a subtraction had taken place. It is
for this reason that in the FUNCTION column the operation is shown as a subtraction.

The compare routines 1 to 5 set the Z and S flags as though a subtraction had taken place, and load
the A req. with 0 if the two values are equal, with 1 if a subtraction would have resulted in a positive
result and with FFH if a subtraction would have resulted in a negative result. Note that using
compare 1 with a NTF of 3 will result in an error. 'Then there is the RST 8 and the RST 10H, these
are used for scanning strings. RST 10H does the following:

1D78 23 INC HL
1D79 7E LD A, (HL) ; ;GET FIRST CHARACTER
1D7A FE3A CP 3AH ; ;IS CHARACTER NUMERIC ?
1D7C D0 RET NC; ;RETURN IF IT ISN'T
1D7D FE20 CP 20H ; ;IS CHAR ASCII SPACE ?
1D7F CA78lD JP Z,1D78H ; ;LOOP TQ BYPASS SPACE
1D82 FE0B CP OBH ; ;IS IT > OAH ?
1D84 3005 JR NC,lD8BH ; GO FIX C FLAG.
1D86 FE09 CP 9H ; ;IS IT CONTROL CHAR ?
1D88 D2781D JP NC,1D78H ; LOOP TO BYPASS
1D8B FE30 CP 30H ; IS CHAR NO 0 TO 9 ?
1D8D 3F CCF ; C FLAG SET IF NUMERIC
1D8E 3C INC A ; ELSE RESET C FLAG.
1D8F 3D DEC A ; SET Z FLAG IF A = 00H
1D90 C9 . RET ; RETURN WITH FLAGS SET.

39

TABLE 5.
COMPARE & TEST ROUTINES.

NO ADDRESS FUNCTION COMMENTS ROUTINE TYPE (NTF)

1 0994H SGN (ACC) * NTF =2,4 or 8, ERROR if NTF = 3
ALL REG'S SAVED

2 0A0CH ACC-BCDE * NTF = 4 ONLY
ALL REG'S SAVED

3 0A39H HL-DE * TWO'S COMPLEMENT
ALL REG'S SAVED

4 0A4FH ACC-AACC * NTF = 8

5 0A78H AACC-ACC * NTF = 8

6 1C90H HL-DE BC, DE AND HL SAVED
UNSIGNED COMPARE

7 1C96H (HL)-((SP)) BC,DE SAVED
RST 8H

8 1D78H (HL) BC, DE SAVED
RST 10H C and Z flags used ,HL incremented

see text.
9 25D9H NTF A = NTF – 3,Z & S flags valid

RST 20H C set if NTF <> 8, C reset if NTF = 8

The following routine checks the ACC
10 0955H ACC If ACC=0, Z flag is set

This routine checks for strings
11 0AF4H NTF If NTF <> 3, TM ERROR

BC,DE and HL saved

This routine examines the byte pointed to by HL for character type
12 lE3DH (HL) C flag set if (HL) =ASCII letter value

or reset otherwise.

* A reg. = 0 if equal, A reg. = 1 if > 0, A reg. = FFH if < 0

Note: compare routines 1 to 6 above also set or reset the S and Z flags.

40

This routine bypasses spaces and control characters (vertical and horizontal tabs) and sets the C flag
if the character is numeric. The HL reg. will point to the first non-blank character in the string.

RST 8 compares the character pointed to by HL with the value pointed to by the two bytes on the
top of the stack (which is the return address in this case). Care must be taken here because, if they
are unequal, a SN ERROR will be generated. If they are equal, the return address will be
incremented to bypass the test character (which should be placed right after the RST 8 in your
programs). Before this routine returns it will call RST l0H to find the next non-blank character. This
routine can be used to check for certain characters and point to the next non-blank character after
execution. It must also be noted that disk system users should CALL the actual addresses listed in
the ADDRESS column and not use the RST 8H or RST l0H instructions.

* * * * * * * * *

41

DATA CONVERSION ROUTINES

So far we have discussed routines for arithmetic and compare functions. Some functions however,
will only work with one type of data format. Additionally, input from the keyboard needs to be
converted from ASCII to Hexadecimal before it can be used while the opposite process is necessary
when printing a number to the printer or video display. This section describes ROM routines which
perform such functions.

42

TABLE 6

CONVERSION LOGIC

ADDRESS INPUT OUTPUT COMMENTS

0E65H (HL) ACC, NTF=8 This routine converts an ASCII string pointed to by
HL into a number stored in the ACC. The string must
end with a comma or zero byte. (AACC is changed)
After execution HL will point to the last byte of the
string. (00H or ",")

0E6CH (HL) ACC This routine performs the same function as E65H
above except that the output in the ACC is of the
smallest NTF type possible for the size of the number.

0FBDH ACC HL This routine converts a number contained by the ACC
to an ASCII string. The start address of the string will
be returned in the HL register pair. The string is
terminated with a zero byte. (ACC and AACC are
changed)

1E5AH (HL) DE This routine converts a numerical ASCII string
pointed to by the HL register pair to a
HEXADECIMAL value. The result is placed in the
DE register pair. For more information see Part 1.

2B1CH (HL) A The main function of this routine is to convert a
numerical ASCII string pointed to by the HL register
pair to HEXADECIMAL. The result is placed in the A
register. For more information see Part 1.

43

INPUT ROUTINES

These routines are used to input data from the keyboard. There are two different types of input
routines, the first type returns with one character only while the other allows a string of characters
to be input into an input buffer. At this stage it is appropriate to mention that the SYSTEM command
sets the stack pointer to 4288H which is right in the middle of the input buffer normally used by
BASIC. To overcome this, set either the stack pointer or the buffer to a different location in
memory. The buffer can be relocated by putting a suitable address in memory location 40A7H which
is the I/O buffer pointer.

The 361H and lBB3H routines pass control to 4lAFH which contains a RET (C9H) instruction if
Level II is used. Disk BASIC however, uses this location to jump to DOS code which could cause
unreliable results. If these routines are called while disk BASIC is enabled, it is best to set 41AFH
to C9H.

44

TABLE 7.

CHARACTER INPUT ROUTINES.

ADDRESS OUTPUT COMMENTS

002BH reg. A This routine scans the keyboard and returns with the
ASCII value for the key which is pressed, in the A register.
 A will return with zero (0) if no key was pressed during
the scan. BC and HL are saved.

0049H reg. A This routine is the same as 2BH except that it will not
return until a key is pressed. BC and HL are saved.

035BH reg. A This routine simulates the INKEY$ function. The rules for
this routine are the same as for the 2BH routine The
ONLY difference is that all registers are saved whereas the
2BH routine destroys the DE req. pair.

STRING INPUT ROUTINES.

NOTE THAT ALL THE ROUTINES IN THIS TABLE WILL DISPLAY THE DATA
TO THE SCREEN AS IT IS TYPED IN.

ADDRESS COMMENTS

0361H This routine inputs a string from the keyboard and stores it at the buffer location
pointed to by the I/O buffer pointer 40A7H. The string may be up to 240 bytes
long. The input string will be terminated with a zero byte automatically, as soon
as the ENTER key is pressed. After execution, the B req. will contain the string
length and the HL req. will point to one byte before the start of the string so that
RST 10H can be used to locate the first non-blank character.

45

STRING OUTPUT ROUTINES

There are several output routines available in ROM. Some are general purpose output routines
which will output to printer, video or tape. Others will only output to the display. The general
purpose routines invariably use the location 409CH as a flag byte to indicate the device to which the
output is to be directed. If this location is loaded with 00H the output will go to the video display.
 If it is loaded with 01H output will be directed to the line printer, and if it is loaded with -1 (FFH)
the output goes to tape.

46

TABLE 9.

SINGLE BYTE OUTPUT ROUTINES.

ADDRESS COMMENTS

0033H This routine will output a byte from the A register to the video display. DE is
destroyed.

OO3BH This routine is the same as 33H except that output goes to the line printer. DE is
destroyed.

032AH * This routine will output a byte from the A register to the display, printer or tape
depending on the state of 409CH. (see text).

033AH This routine performs the same function as 33H, the only difference being that the
DE register pair is saved. This means that all the general purpose registers are
saved.

039CH This routine outputs a byte from the A register to the line printer, it is the same as
3BH except that the DE register pair is also saved.

* These routines are able to output data to tape only if the correct procedure is followed for
setting up the cassette. See the tape section for more detail.

47

TABLE 10.

STRING OUTPUT ROUTINES.

ADDRESS COMMENTS

28A7H * This routine will output a string of data to the display, printer or tape depending
on the contents of 409CH. The HL register pair must point to the start of the string
to be output. The string must be terminated with a zero byte (00H) or a quote
(22H)

2F0AH * This routine performs the same function and has the same requirements as the
28A7H routine. The only difference is that the output string can only be
terminated with a zero byte and will not accept a quote like 28A7H does for a
delimiter.

• These routines are able to output data to tape only if the correct procedure is followed for
setting up the cassette. See the tape section for more detail.

48

DEMONSTRATION PROGRAM

The program listed below demonstrates input, output and arithmetic routines. When this program
is executed it will print a question mark, if this is answered with two numbers separated by a
comma then they will be multiplied and the result printed on the screen.

10 ORG 7000H
20 START CALL 1BB3H ;INPUT X,Y
30 RST 10H ;FIND FIRST CHAR
40 CALL 0E6CH ;PUT X VALUE IN ACC
50 PUSH HL
60 CALL 0AB1H ;CSNG
70 CALL 9BFH ;STORE TO BCDE REG.S
80 EXX ;SAVE REG.S
90 POP HL
100 RST 8H ;CHECK FOR COMMA
110 DEFB ‘,’
120 CALL 0E6CH ;PUT Y VALUE IN ACC
130 CALL 0ABlH ;CSNG
140 EXX ;RESTORE REG.S
150 CALL 847H ;MULTIPLY X AND Y
160 LD HL,BUFR
170 CALL 0FBDH ;PUT RESULT IN BUFFER
180 XOR A ;SET FLAG FOR
190 LD (409CH),A ;VIDEO OUTPUT
200 CALL 28A7H ;PRINT RESULT
210 LD A,0DH
220 CALL 33H ;PRINT CARRIAGE RET.
230 JR START ;DO IT AGAIN
240 BUFR DEFS 240 ;240 BYTE BUFFER HERE
250 END START

49

TAPE I/O ROUTINES

Using tape I/O in a machine language program is straight forward. All tape I/O can be handled by
a series of calls. Before using the tape I/O routines it might be a good idea to read the data format
section to find out how data is actually stored on tape. Also note that the user will have to determine
when to stop reading from tape. The data format section can be consulted, to show what the end of
file pointers are.

* The general purpose output routines 32AH and 28A7H can also be used to output to tape, however
212H and 287H will have to be called to define drive and write leader as normal.

DEMO TAPE I/O ROUTINE

This is a tape I/O routine which can either read or write 255 bytes. A CALL 264H in line 70 will
write to tape and a CALL 235H will read from tape.

10 ORG 7000H
 20 START XOR A ; CLEAR A
30 CALL 212H ; DEFINE DRIVE
40 LD HL,5000H ; START ADDRESS
50 LD B,0FFH ; WRITE 255 BYTES
 60 LOOP LD A, (HL) ; GET BYTE FROM MEM
70 CALL 264H ; WRITE IT TO TAPE
80 DJNZ LOOP ; LOOP TILL DONE
90 CALL 1F8H ; TURN CASSETTE OFF
100 JP 6CCH ; RETURN TO BASIC
110 END START

The read routine will be identical except for line 70 which will read:
70 CALL 235H ; READ A BYTE FROM TAPE

50

TABLE 11.

TAPE I/O AND CONTROL.

ADDRESS COMMENTS.

01F8H This routine simply turns the tape recorder off. BC, DE and HL are unchanged.

0212H This routine is used to turn the tape recorder on, the A register should contain
00H to turn recorder 1 on or 0lH to turn recorder 2 on. BC,DE & HL are saved

022CH This routine will blink the asterisk in the right hand top corner. AF is destroyed.
Note that this routine will only function properly if location 3C3FH contains an
ASCII blank or an asterisk. If necessary a CALL 29FH can be used to turn both
the asterisks on when required.

0235H This routine will read a byte from tape and return with it in the A register BC, DE
and HL are saved.

0264H Writes a byte from the A register to tape. BC, DE and HL are saved.

0287H Writes tape leader and A5H sync byte to tape. BC, DE and HL are saved.

0296H This routine will read until the A5H sync byte has been found. It will bypass
anything on tape until the sync byte is located including the leader. BC, DE and
HL are saved.

029FH This routine is the part of the routine at 0296H which places the two asterisks in
the top right corner of the screen when the sync byte is found. 029FH may be
called independently of 0296H.

0314H This routine reads two bytes and returns with them in the HL register pair.

51

*** VARIABLE ORGANISATION AND VARIABLE LOCATING ROUTINES ***

This section deals with routines which are used to locate variables created by BASIC and one routine
which can interpret a BASIC expression and store the result in the ACC. The routines located at
260DH and 2540H allow the passing of values from BASIC to a machine language subroutine. The
number of values that can be passed is dependent only on the number of variables allowed by
BASIC.

These routines are quite simple to use. To use routine 260DH for example, simply make the HL
register pair point to the first character of an ASCII string representing the name of the variable
whose value is required, then execute a CALL 260DH. After execution, the DE register pair will
contain the address of the variable in memory. This enables you to locate the value in memory and
operate on it. Note that if the variable doesn't exist it will be created and given a value of zero,
therefore care must be taken to use variables already created, because creation of a new variable
could mean that all other variables are moved in memory and addresses already returned by the
260DH routine will no longer be valid.

With string variables the address returned in the DE register pair does not point to the variable
directly but to the first of three bytes containing the string length followed by the actual string
address. The 2540H routine performs a similar function to 260DH except that the value of the
variable is placed in the ACC and the NTF is set accordingly. For string variables this routine will
load the ACC with three bytes containing the length and address of the string.

52

Finally, we come to 2337H which is a very useful routine. It allows the user to execute BASIC
expressions during a machine language subroutine. Input to this routine consists of a string
containing a BASIC expression terminated (delimited) by a colon, comma, right bracket “)” or a zero
byte. The HL register pair should be made to point to the first character of the expression. After
execution of a CALL 2337H the result will be in the ACC and the NTF will be set appropriately. In
the case of strings the ACC will contain the three bytes indicating string length and string location
address. It is important to note that this routine makes considerable use of the stack and also the
machine must be in the RUN mode for it to work as expected. All routines presented here will
return with the HL register pair pointing to the delimiter.

TABLE 12.

SPECIAL PURPOSE ROUTINES.

ADDRESS INPUT OUTPUT

2540H * (HL) = first char. ACC, NTF
of ASCII var. name HL points to delimiter

260DH * (HL) = first char. DE = start address of
of ASCII var. name value of variable.

2337H * (HL) = first char. ACC, NTF of ASCII string
delimited with :,) or zero byte.

29D7H This routine will make the HL register pair point to the data in the ACC. NTF
must be set before
CALLing this routine.

* see text.

53

VARIABLE ORGANISATION

This section explains the format used for variables in BASIC. Numeric variables are stored in
memory as follows:

NTF This is the number type. (also length of data)

2nd char of variable name.

1st char of variable name.

Data. The data will be stored in the same format as shown in Table 1

String variables are somewhat different. The data following the variable name consists of three
bytes, the first of which is the string length while the second and third form the actual string location
address.

Finally, there are array variables. The data element for these is different again. The first two bytes
after the variable name contain the size of the array (ie. the number of bytes used). The third byte
contains the number of dimensions used, next there are two bytes for each dimension in the array
which indicate the number of data elements in each. (As this includes the zero element, the values
in these bytes are always one higher than the original DIMensioned size). The data is arranged so
 that the first index varies the fastest. In other words, if an array is DIMensioned to be DIM A(2,2),
 then the data will be stored in the following sequence:-

 0,0 - 1,0 - 2,0 - 0,1 - 1,1 - 2,1 - 0,2 - 1,2 - 2,2

54

ERROR ROUTINES

When writing machine language subroutines it may become necessary at times to test for errors.
Finding errors is not a problem, but letting the outside world know what sort of error has occurred
can be tedious and cost both program space and space to store the error message strings. To
overcome this, BASIC's error messages can be used. It is for this purpose that a variety of error
locations are given in Table 13. To use these just jump to the address given. The error message will
be printed and control will be handed back to the BASIC command mode. Which brings us to
another related subject; whenever an error occurs while in the BASIC mode, control is passed to
location 41A6H, before the error message is printed to the display, normally this location contains
a RETurn instruction (C9H) which means that it will return to whence it came, straight away.
However this location can be used to pass control to a machine language routine used for error
trapping etc. As a matter of fact Disk BASIC uses this location to pass control to a routine which
will print the error messages in full instead of the abbreviated form that Level II uses.

55

TABLE 13.

ERROR ROUTINE ENTRY POINTS.

ADDRESS ERROR MESSAGE TYPE.

012DH L3 ERROR (DISK BASIC ONLY)
07B2H OV ERROR (OVER FLOW)
0AF6H TM ERROR (TYPE MISMATCH)
197AH OM ERROR (OUT OF MEMORY)
1997H SN ERROR (SYNTAX ERROR)
199AH /0 ERROR (DIVIDE BY 0 ERROR)
199DH NF ERROR (NEXT WITHOUT FOR)
19A0H RW ERROR (RESUME WITHOUT ERROR)
1E4AH FC ERROR (ILLEGAL FUNCTION CALL)
1EECH RG ERROR (RETURN WITHOUT GOSUB)
2003H UE ERROR (UNPRINTABLE ERROR)
27EDH BS ERROR (BAD SUBSCRIPT)
2831H ID ERROR (ILLEGAL DIRECT)
2BA1H ST ERROR (STRING FORMULA TO COMPLEX)

56

VIDEO CONTROL

This section handles a variety of routines relating to control of the video display. There is a routine
to clear the screen completely, and there is a routine to clear from a predetermined position to the
bottom of the screen. Then there are the routines to change from 64 to 32 characters per line and
vice versa. The only routine that needs further explanation is the clear to end of frame routine. To
use this routine, the HL register pair must be loaded with the location from which you wish to start
erasing.

Often it is necessary to clear the screen from the cursor location onwards. To do this simply load
the HL register pair with the cursor location contained by 4020H to 4021H and CALL 57CH.

TABLE 14.

VIDEO CONTROL ROUTINES.

ADDRESS INPUT COMMENTS

01C9H N/A Performs the CLS function

04C3H N/A This routine will change the
display back to 64 char.'s per line.

04F6H N/A This routine will change the
display to 32 char.'s per line

057CH HL = cursor pos. Clear screen to end of frame
or address from routine.
which erasing
is to start.

57

GRAPHICS

The graphics routines are somewhat difficult to use. This is both because they are part of the BASIC
decoding logic, and because a RST 8H is called at the end of each routine. A dummy string can be
used, however, in order to satisfy the RST 8H logic. Let us assume that it is necessary to set a
graphic block at location X = 65 and Y = 23 which is about middle of the screen. In its simplest
form the program would look like this:

100 ORG 5000H
110 LD B,65 ;LOAD X COORDINATE.
120 LD A,23 ;LOAD Y COORDINATE.
130 LD H,80H ;LOAD "SET" FLAG.
140 CALL GRAFIX ;PUSH RET ADDRESS TO STACK.
150 HALT ;FINISHED.
160 GRAFIX PUSH HL ;PUSH FLAG.
170 PUSH BC ;PUSH X COORDINATE.
180 LD HL,188CH ;POINT HL TO DUMMY STRING.
190 JP 150H ;JUMP TO GRAPHICS LOGIC.
200 END

Now, let's go through this one line at a time. The program starts with an ORG statement to tell the
assembler to start at 5000H. Next, line 110 loads the B register with the X coordinate and line 120
loads the A register with the Y coordinate. That was all straight forward, line 130 however needs
explaining. This line loads the H register with 80H. 80H is the flag for the SET function. The
graphics routine can perform the POINT, SET or RESET function depending on the flag byte passed
to it in the H register Note the following flag values for the different functions:

80H = SET

0lH = RESET

00H = POINT (the POINT logic will return with 0 in the ACC if block is SET or with FFFFH
if block is RESET)

58

Line 140 then CALLs the code labeled GRAFIX. Stop and think about this for a while because
there is more to it then first appears. A CALL is used here to place the return address on the stack
for the RST 10H logic which is the very last routine called by the graphics routine in ROM.
Whatever process is used to do this a return address MUST be pushed on the stack at this stage.

Line 150 is the location of the return address pushed by the CALL statement in line 140. The
program will just stop here when its task is finished. Line 160 pushes the flag byte onto the stack
and line 170 pushes the X coordinate. These two values must be pushed to the stack in the order
shown because the graphics routine will POP them off the stack when it needs them. Line 180 loads
the HL register pair with the address of a dummy string. This string is located in ROM at 188CH and
is ")+". It is not necessary to use a string out of the ROM area but it saves space in our sample
program. There are numerous strings in ROM suitable for this purpose. A dummy string is needed
because when the RST 8H is called by the graphics routine, it looks for a right bracket. A dummy
string with a bracket followed by any non blank character is therefore needed. The reason the RST
8H routine looks for a right bracket ")" is because the graphics routine is a part of the BASIC
decoding logic and it is looking for the bracket associated with the BASIC statements SET, POINT
and RESET. Finally line 190 will pass control to the graphics logic. After reading this section
carefully graphics should pose no problem. Of course, if more than one block has to be set, then a
routine such as this will have to be placed in some form of loop.

59

KEYBOARD MEMORY

The title of this section is actually not quite correct. The keyboard area from 3800H to 3BFFH is
not memory at all but a matrix of buffered switches. If the format of this matrix is known, it is quite
simple to use the keyboard for input directly instead of the input routines. Sometimes, it is necessary
to scan the keyboard quickly for a particular key (such as the BREAK key) and it will be necessary
to know where to look. The following table shows the matrix format.

BIT NUMBER 7 6 5 4 3 2 1 0
(80) (40) (20) (10) (08) (04) (02) (01)

ADDRESS
3801 G F E D C B A @

3802 O N M L K J I H

3804 W V U T S R Q P

3808 Z Y X

3810 ' & % $ # " !
7 6 5 4 3 2 1 0

3820 ? > = < + *) (
0/ . - , ; : 9 8

3840 SPC RA LA DA UA BRK CLS ENT

3880 SHFT

(SPC = SPACE, BRK = BREAK, CLS = CLEAR, SHFT = SHIFT, ENT =

ENTER, RA = RIGHT ARROW, LA = LEFT ARROW, UA = UP ARROW, DA =

DOWN ARROW.)

60

Let us go through an example on how to use this Table. First let us assume we want to check if the
BREAK key is down. Now find the row containing the BREAK key in the table, then note the
address at the left of this row. This is the address from which to read. Then go up from the location
of the BREAK key in the Table to see which bit will be set if the BREAK key is pressed. A program
which checks for the BREAK key would look like this:

100 LD A,3840H ; READ FROM ROW CONTAINING BREAK
 KEY.

110 AND 04H ; MASK AND SET FLAGS
120 JP NZ,BREAK ; BREAK KEY IS DOWN
130 ……… , CONTINUE AS BREAK KEY IS NOT

 DOWN

Line 100 reads from the row indicated in the table for BREAK key. Line 110 will only reset the Z
flag if the BREAK key is pressed down. (note that the value to AND with is given in the column
containing the key in question.) Line 120 then will jump to a location called "BREAK" only if the
BREAK key is down.

* * * * * * * * * * * * * * * * * ** * * * * * * * * * * * *

61

DOS LINK ADDRESSES

The Level II BASIC interpreter was written with upward expandability in mind: Right from the
start it was decided that there would be a Disk BASIC version with more powerful instructions
then possible with the Level II 12K interpreter: In order to allow for this the Disk BASIC link areas
were created. Whenever BASIC finds a Disk BASIC command in a program (or typed directly from
the keyboard) it will jump to a unique location in reserved RAM. In the case of Level II these
locations contain the L3 ERROR entry points. Disk BASIC loads these locations with addresses of
routines which can execute the particular commands. The table below gives these locations for both
TRSDOS 2.2 and TRSDOS 2.3.

ENTRY POINT
LINK ADDRESS COMMAND TRSDOS 2.2 TRSDOS 2.3

4152H CVI 5E46H 5Fl8H
4155H FN 558EH 558EH
4158H CVS 5E49H 5FlBH
415BH DEF 5655H 5655H
415EH CVD SE4CH 5F1EH
4161H EOF 6lEBH 62B8H
4164H LOC 6231H 62FEH
4167H LOF 6242H 630FH
416AH MKI$ 5E2DH 5EFFH
416DH MKS$ 5E30H 5F02H
4170H MKD$ 5E33H 5F05H
4173H CMD 56C4H 56CBH
4176H TIME$ 5714H 5745H
4179H OPEN 6349H 6434H
417CH FIELD 60ABH 61AFH
417FH GET 627CH 6355H
4182H PUT 627BH 6354H
4185H CLOSE 606FH 6173H
4188H LOAD 5F7BH 606EH
418BH MERGE 600BH 6109H
418EH NAME 6346H 6544H
4191H KILL 63C0H 6521H
4194H & 58B7H 5913H
4197H LSET 60E6H 620BH
419AH RSET 60E5H 620AH
419DH INSTR 582FH 588BH
4lA0H SAVE 6044H 6148H
41A3H LINE 5756H 5786H

Level II users can use these addresses to make the machine jump to a machine language program
when BASIC finds a particular Disk BASIC command.

62

INTERCEPT ADDRESSES

There are a few other addresses worth mentioning. First, there is 41A6H. As mentioned before, this
address can be used to intercept and trap errors. Then there is 41BBH. This address can be used
to intercept the initialization routine. 400CH can be used to intercept the BREAK key routine.
41C4H is a very useful interface address as well, BASIC always jumps to this address before
executing a line. If this link address is used, HL will be pointing to the start of the BASIC line to
be processed next. The keyboard scanning routine can be intercepted by loading location 4015H with
zero and putting a jump to the entry point of your machine language routine. This method can be
used to intercept characters before BASIC can respond to them. In order to do this however the user
must CALL the keyboard driver routine at 3E3H first. To give an example assume that we wish to
disable the BREAK key, the code that the BREAK key returns is 01H. A program to do this will look
like this:

10 ORG 4015H
20 DEFB 0
30 ORG 4033H
40 DEFB C3H ; C3 = JUMP
50 DEFW START ; LOAD JUMP VECTOR
60 ORG 7000H
70 START CALL 3E3H ; GET CHARACTER
80 CP 0lH ; IS IT BREAK KEY
90 RET NZ ; CARRY ON IF NOT BREAK
100 XOR A ; CLEAR A REG. TO IGNORE BREAK KEY
110 RET ; CARRY ON
120 END

A call 3E3H will return with the key which is pressed in the A register. It is therefore a simple
matter to Compare if the character returned is the one you are looking for.

63

MISCELLANEOUS

This section handles all the leftovers which don't fall under any particular group. The routines
are handled according to their location in memory.

TABLE 15.
ADDRESS COMMENTS.

0060H The delay loop is located here. This routine uses the BC register pair as a loop
counter and loops until the BC register is decremented to zero. The time delay is
the value in BC multiplied by 14.65 microseconds. The A register is
destroyed.

02B5H A jump to this location will pass control to the SYSTEM routine. This might be
useful at times if it is necessary to load a system tape to memory.

06CCH This is a good location to re-enter BASIC from a machine language routine

lAl9H This is a re-entry point for BASIC also. (6CCH is however, recommended
instead).

lAF8H This is a very useful routine. It will check and repair the line pointers (if
necessary) in a BASIC program. This function is needed after shifting or
relocating lines of BASIC program in memory, as the line pointers would
otherwise be invalid.

lB2CH This routine will search a BASIC program for the location of a BASIC
statement line, the number of which corresponds to the value in the DE register
pair. If a match is found, the carry flag will be set and the BC register pair will
point to the start of the line in question. HL will then point to the next line.

64

DATA AND TAPE FORMATS

This section reveals the format of BASIC and machine language programs and data files, both
in memory and on tape. The bytes marked with an asterisk are for tape only. This means that
the files are stored on tape in the same manner as they appear in memory, with the exception
of a leader and some bytes at the beginning of the file.

BASIC PROGRAM FORMAT.
* Leader consisting of 256 zeros.
* A5 Sync byte.
* D3 D3 D3 Basic header.

* Name File name (one character long)

LSB Line pointer. Points to location of start

MSB of next line.

LSB Line number in hexadecimal.

MSB

• Actual program line of varying length is
• stored here.

00 Zero byte signifies end of line.

New line starts here (starting with line pointer) OR

00 00 End of BASIC program. This is marked by two zero bytes after the
end of line marker.

65

SYSTEM TAPE FORMAT.

* Leader

* A5 Sync byte
* Name Six byte long ASCII file name. If name is less than six bytes long it

will be padded with blanks.
3C Block header code.
XX Block length from 1 to 256 bytes. (0 = 256)
LSB Starting location of block in memory.
MSB

• Block of data stored here. (varying length)

XX Checksum. The total of starting address and all data in this block
with any carry ignored.

The block from 3CH onward is repeated until all the program is complete.

78 End code.

LSB Entry point for program.
MSB

FORMAT OF A SOURCE FILE FROM EDTASM.

* Leader
* A5 Sync byte.
* D3 Start code.
* Name Six byte long name. Names shorter than six

bytes are padded with blanks.
Line number The line number will be stored in ASCII and is five bytes long. (note that

this is not real ASCII code because the eighth bit is set)

20 Blank spacer.

• ASCII coded source code stored here.

0D Carriage return marks end of line.
1A End of file marker.

66

DATA FORMAT FOR FILES CREATED WITH "PRINT #-l"

Leader
A5 Sync byte.
XX Sign of the data. Will be 20H if positive or 2DH if negative.

ASCII coded data stored here.

20 End Of Field Code.

2C Field separator. (ASCII for comma)

More data may be placed here

0D Carriage return marks end of data.

ADDRESSES USED BY EDTASM.

At this stage it might we worthwhile to give a few addresses which are used by EDTASM.
These might come in handy for those times when, after jumping back to BASIC, you realize
that you forgot to write the source to tape.

ADDRESS USE
4113 End of memory pointer.
4115 Start of memory pointer.
41C3 Start of symbol table pointer.
4301 Keyboard driver address pointer.
45AA Line printer driver.

67

INITIALIZING MACHINE LANGUAGE SUBROUTINES

There are several important features of machine language programs. If the SYSTEM command
is used to load and initialize a machine language program, the stack pointer will be set right in the
middle of the area (4288H) used by BASIC as the buffer. This does not pose any problems for
straight machine language programs which do not call any input routines in ROM. However, if use
is made of such routines, the Stack Pointer or buffer must be relocated. The buffer can be relocated
by loading the buffer pointer (40A7H) with a new address. It is however preferable to move the
stack to a different location.

Machine language subroutines used with the USR function do not need any special consideration
except that the Stack Pointer must contain the same value when returning as it did when the
subroutine was first entered. There are two options when deciding where to place a machine
language routine. It can be placed in high memory in which case the Memory Size has to be set by
the user, to protect it from BASIC. Or a machine language program can be placed in low memory,
(4230H onwards) and the BASIC program pointers set past it. If a program is placed in low memory
the start of BASIC pointer 40A4H and the pointers 40F9H, 4OFCH and 4OFDH will have to be set
a couple of bytes past the end of your machine language routine. This should be done immediately
after loading the routine to memory

68

USING MACHINE LANGUAGE PROGRAMS ON DISK SYSTEMS.

The disk user is faced with some different problems. These are caused by the way the DOS
initializes. First let me make clear that there are no problems with straight machine language
programs which make no ROM calls or with machine language subroutines used with BASIC
through the USR function. The problem stems from the fact that DOS does not initialize the BASIC
pointers and jump vectors, which are used by many of the ROM calls presented in this manual, until
BASIC is called up by the user. Most disk users therefore first load the machine language program
to memory and then initialize BASIC, after that they will use the SYSTEM command to jump to the
entry location of their program. This is one way of doing things but is somewhat tedious because
the user has to remember the entry point address in decimal for the SYSTEM command. There is
however, a different way of initializing your machine language programs. After some investigation
it will be found that the printer, video and keyboard control blocks are initialized by the DOS system
on power up, and are untouched by the BASIC initializing procedure when BASIC is called up.
This means that the line printer driver address at 4026H and 4027H can be loaded with the entry
point to a machine language program then after BASIC is initialized all that is required is to type
LPRINT and control will be passed to the machine language program. For those users who need to
use the line printer all that is required is to reload the proper LPRINT driver address back into the
LPRINT driver location as soon as control is passed to the machine language program.

69

PORT 255

Port 255 has several different applications in the TRS-80. It is used for cassette recorder control
and I/O. It is also used to set the display to 32 or 64 characters per line. The four least
significant bits in the byte sent to this port, control its function. If an OUT (255),A is executed
these bits perform the following functions :

BIT NUMBER * BIT STATUS & FUNCTION.

3 If this bit is set (1) it will cause the video display to display 32
characters per line. If it is reset (0) then 64 characters per line will be
displayed.

2 If this bit is set the cassette recorder will be turned on. If it is reset
the recorder will be turned off.

1 and 0 00 Will cause a zero voltage to be written to tape.
01 Writes a positive voltage to tape.
10 Writes a negative voltage to tape.

BASIC program which sets each control bit in turn, demonstrating the functions of port 255.

10 FOR X = 1 TO 4: READ N: OUT 255, N

20 PRINT N: FOR D = 0 TO 500: NEXT D

30 NEXT X: END

40 DATA 8,4,2,1

70

APPENDIX 1
SAMPLE PROGRAM

The program listed below shows how the DOS link addresses can be used. It provides a new
BASIC command, the syntax of which is CMD"B,X". Where "X" is any BASIC variable. When this
command is executed, the binary value of the variable specified will be printed to the screen. Note
that the binary value returned is in two's complement form. Since the routine is going to be part
of the BASIC interpreter, it is reasonable to put the routine in low memory and move the BASIC
program pointers past it. This is achieved by the routine labeled INIT. This part of the routine
zeroes three bytes in memory where the start of BASIC memory is going to be and fixes the start
 of BASIC pointer, variables pointer, the array variables pointer and the free space pointer
accordingly. Note that the start of BASIC pointer must point to two bytes before the end of
BASIC pointer and that the byte before and two bytes after the start of BASIC memory must be
zero to show BASIC that there is no program in memory. Finally, the CMD link address is loaded
with the ENTRY point to the main program. This program finds the value of a variable and
displays it as a 16 bit binary value to the screen, (the numbers must fall in the same range as BASIC
integer values).

Although the program is not terribly exciting, it does demonstrate the principles involved.
 Line 170 shows the use of a CALL 2337H which evaluates the current BASIC expression,
checks for errors and places the string part (the part between commas) of the CMD command in
the string work area and loads the buffer with the string length and string address. The CALL
29D7H does some housekeeping for BASIC and makes the HL register pair point to the first
of the three bytes containing string length followed by the string address. Line 200 to 220 checks
 if the string length is zero and generates an ILLEGAL FUNCTION CALL if it is. Line 240 to 270
gets the string address and checks if the control character is a "B". The rest of the program is
straightforward and the comments show what it does. The best way to learn how to use the
 ROM routines is by experimenting with them so try some and see their effect, use a monitor if
necessary to examine memory areas such as the ACC area and pointers.

The new BASIC command can be used in the following way:

10 FOR N = 0 TO 15: CMD"B,N": PRINT:NEXT N

This will print a column of bit binary values from 0 to 15.

71

10 ORG 433FH
20 INIT LD HL,FINISH+1
30 XOR A ;CLEAR A
40 LD (HL),A ;ZERO MEMORY LOCATIONS
50 INC HL
60 LD (HL),A
70 LD (40A4H),HL ;FIX THE START OF BASIC
80 INC HL ;MEMORY POINTER
90 LD (HL),A
100 INC HL
110 LD (40F9H),HL ;FIX VARIABLE AREA POINTER
120 LD (40FBH),HL ;FIX ARRAY POINTER
130 LD (40FDH),HL ;FIX FREE SPACE POINTER
140 LD HL,ENTRY ;GET ENTRY ADDRESS
150 LD (4174H),HL ;FIX CMD LINK VECTOR
160 JP 6CCH ;RETURN TO BASIC
170 ENTRY CALL 2337H ;EVALUATE EXPRESSION
180 PUSH HL
190 CALL 29D7H ;GET STRING ADDRESS ETC
200 LD A, (HL) ;GET STRING LENGTH
210 OR A ;SET FLAGS
220 JP Z,1E4AH ;IF ZERO FC ERROR
230 INC HL
240 LD E,(HL)
250 EX DE,HL ;STRING ADDRESS IN HL
260 LD A, (HL) ;GET FIRST CHARACTER
270 CP 'B' ;IS IT B ?
280 JP NZ,1E4AH ;ONLY ACCEPT CMD"B"
290 RST 10H ;FIND NEXT CHARACTER
300 RST 8H ;IS IT A COMMA ?
310 DEFB ','
320 CALL 2540H ;PUT VALUE OF VAR IN ACC
330 CALL 0A7FH ;CONVERT TO INTEGER
340 CALL BINOUT ;DISPLAY BINARY BYTE
350 LD H,L
360 CALL BINOUT ;DISPLAY LSB BYTE
370 POP HL
380 RET ;ALL DONE
390 BINOUT LD B,8 ;8 BITS IN BYTE
400 LOOP XOR A
410 SLA H ;SHIFT BIT INTO C FLAG
420 ADC A,30H ;ADD BIT AND CONVERT TO ASCII
430 CALL 33H ;DISPLAY IT
440 DJNZ LOOP ;LOOP TILL 8 BITS DONE
450 LD A,20H
460 CALL 33H ;DISPLAY SPACE
470 FINISH RET
480 END INIT

72

APPENDIX 2

CONVERSION TABLE

This table lists all possible values of a single byte (0 to 255) and their respective uses in the TRS-80.
This includes all control codes (carriage return, linefeed etc.) and compression codes for BASIC
commands. The BASIC commands are stored in memory as single byte values. The first of these
for instance, is the END statement which is stored as 80H. At times we may want to write a machine
language program which processes lines in a BASIC program. In order to do this we must know
what the compression codes and control codes are; this table will allow the user to find them.

BINARY HEX. DEC. COMMENTS

00000000 00 0 NULL
00000001 01 1 BREAK KEY
00000010 02 2
00000011 03 3
00000100 04 4
00000101 05 5
00000110 06 6
00000111 07 7
00001000 08 8 BACK SPACE (left arrow key)
00001001 09 9 TAB (right arrow key)
00001010 0A 10 LINE FEED (down arrow key)
00001011 0B 11
00001100 0C 12 FORM FEED
00001101 0D 13 CARRIAGE RETURN (enter key)
00001110 0E 14
00001111 0F 15
00010000 10 16
00010001 11 17
00010010 12 18
00010011 13 19
00010100 14 20
00010101 15 21
00010110 16 22

73

00010111 17 23 CHANGE TO 32 CHAR./LINE MODE
00011000 18 24 ERASE LINE (shift/left arrow)
00011001 19 25 (shifted right arrow key)
00011010 1A 26 (shifted down arrow key)
00011011 1B 27 (shifted up arrow key)
00011100 1C 28 HOME CURSOR
00011101 1D 29
00011110 1E 30
00011111 1F 31 CLEAR
00100000 20 32 SPACE (start of char. set)
00100001 21 33 !
00100010 22 34 "
00100011 23 35 #
00100100 24 36 $
00100101 25 37 %
00100110 26 38 &
00100111 27 39 '
00101000 28 40 (
00101001 29 41)
00101010 2A 42 *
00101011 2B 43 +
00101100 2C 44 ,
00101101 2D 45 -
00101110 2E 46 .
00101111 2F 47 /
00110000 30 48 0
00110001 31 49 1
00110010 32 50 2
00110011 33 51 3
00110100 34 52 4
00110101 35 53 5
00110110 36 54 6
00110111 37 55 7
00111000 38 56 8
00111001 39 57 9
00111010 3A 58 :
00111011 3B 59 ;
00111100 3C 60 <
00111101 3D 61 =
00111110 3E 62 >
00111111 3F 63 ?
01000000 40 64 @
01000001 41 65 A
01000010 42 66 B
01000011 43 67 C
01000100 44 68 D
01000101 45 69 E
01000110 46 70 F
01000111 47 71 G
01001000 48 72 H
01001001 49 73 I

74

01001010 4A 74 J
01001011 4B 75 K
01001100 4C 76 L
01001101 4D 77 M
01001110 4E 78 N
01001111 4F 79 O
01010000 50 80 P
01010001 51 81 Q
01010010 52 82 R
01010011 53 83 S
01010100 54 84 T
01010101 55 85 U
01010110 56 86 V
01010111 57 87 W
01011000 58 88 X
01011001 59 89 Y
01011010 5A 90 Z
01011011 5B 91 UP ARROW CHAR.
01011100 5C 92 DOWN ARROW CHAR.
01011101 5D 93 LEFT ARROW CHAR.
01011110 5E 94 RIGHT ARROW CHAR.
01011111 5F 95 CURSOR CHAR.
01100000 60 96 (shifted @ key)
01100001 61 97 a
01100010 62 98 b
01100011 63 99 c
01100100 64 100 d
01100101 65 101 e
01100110 66 102 f
01100111 67 103 g
01101000 68 104 h
01101001 69 105 i
01101010 6A 106 j
01101011 6B 107 k
01101100 6C 108 1
01101101 6D 109 m
01101110 6E 110 n
01101111 6F 111 o
01110000 70 112 p
01110001 71 113 q
01110010 72 114 r
01110011 73 115 s
01110100 74 116 t
01110101 75 117 u
01110110 76 118 v
01110111 77 119 w
01111000 78 120 x
01111001 79 121 y
01111010 7A 122 z
01111011 7B 123
01111100 7C 124

75

01111101 7D 125
01111110 7E 126
01111111 7F 127
10000000 80 128 END
10000001 81 129 FOR
10000010 82 130 RESET
10000011 83 131 SET
10000100 84 132 CLS
10000101 85 133 CMD
10000110 86 134 RANDOM
10000111 87 135 NEXT
10001000 88 136 DATA
10001001 89 137 INPUT
10001010 8A 138 DIM
10001011 8B 139 READ
10001100 8C 140 LET
10001101 8D 141 GOTO
10001110 8E 142 RUN
10001111 8F 143 IF
10010000 90 144 RESTORE
10010001 91 145 GOSUB
10010010 92 146 RETURN
10010011 93 147 REM
10010100 94 148 STOP
10010101 95 149 ELSE
10010110 96 150 TRON
10010111 97 151 TROFF
10011000 98 152 DEFSTR
10011001 99 153 DEFINT
10011010 9A 154 DEFSNG
10011011 9B 155 DEFDBL
10011100 9C 156 LINE
10011101 9D 157 EDIT
10011110 9E 158 ERROR
10011111 9F 159 RESUME
10100000 A0 160 OUT
10100001 Al 161 ON
10100010 A2 162 OPEN
10100011 A3 163 FIELD
10100100 A4 164 GET
10100101 A5 165 PUT
10100110 A6 166 CLOSE
10100111 A7 167 LOAD
10101000 A8 168 MERGE
10101001 A9 169 NAME
10101010 AA 170 KILL
10101011 AB 171 LSET
10101100 AC 172 RSET
10101101 AD 173 SAVE
10101110 AE 174 SYSTEM

76

10101111 AF 175 LPRINT
10110000 B0 176 DEF
10110001 B1 177 POKE
10110010 B2 178 PRINT
10110011 B3 179 CONT
10110100 B4 180 LIST
10110101 B5 181 LLIST
10110110 B6 182 DELETE
10110111 B7 183 AUTO
10111000 B8 184 CLEAR
10111001 B9 185 CLOAD
10111010 BA 186 CSAVE
10111011 BB 187 NEW
10111100 BC 188 TAB(
10111101 BD 189 TO
10111110 BE 190 FN
10111111 BF 191 USING

BINARY HEX. DEC. TAB. BASIC COMMAND.

11000000 C0 192 0 VARPTR
11000001 C1 193 1 USR
11000010 C2 194 2 ERL
11000011 C3 195 3 ERR
11000100 C4 196 4 STRING$
11000101 C5 197 5 INSTR
11000110 C6 198 6 POINT
11000111 C7 199 7 TIME$
11001000 C8 200 8 MEM
11001001 C9 201 9 INKEY$
11001010 CA 202 10 THEN
11001011 CB 203 11 NOT
11001100 CC 204 12 STEP
11001101 CD 205 13 +
11001110 CE 206 14 -
11001111 CF 207 15 *
11010000 D0 208 16 /
11010001 D1 209 17 (Up Arrow)
11010010 D2 210 18 AND
11010011 D3 211 19 OR
11010100 D4 212 20 >
11010101 D5 213 21 =
11010110 D6 214 22 <
11010111 D7 215 23 SGN
11011000 D8 216 24 INT
11011001 D9 217 25 ABS
11011010 DA 218 26 FRE
11011011 DB 219 27 INP
11011100 DC 220 28 P0S

77

11011101 DD 221 29 SQR
11011110 DE 222 30 RND
11011111 DF 223 31 LOG
11100000 E0 224 32 EXP
11100001 E4 225 33 COS
11100010 E2 226 34 SIN
11100011 E3 227 35 TAN
11100100 E4 228 36 ATN
11100101 E5 229 37 PEEK
11100110 E6 230 38 CVI
11100111 E7 231 39 CVS
11101000 E8 232 40 CVD
11101001 E9 233 41 EOF
11101010 EA 234 42 LOC
11101011 EB 235 43 LOF
11101100 EC 236 44 MKI$
11101101 ED 237 45 MKS$
11101110 EE 238 46 MKD$
11101111 EF 239 47 CINT
11110000 F0 240 48 CSNG
11110001 Fl 241 49 CDBL
11110010 F2 242 50 FIX
11110011 F3 243 51 LEN
11110100 F4 244 52 STR$
11110101 F5 245 53 VAL
11110110 F6 246 54 ASC
11110111 F7 247 55 CHR$
11111000 F8 248 56 LEFT$
11111001 F9 249 57 RIGHT$
11111010 FA 250 58 MID$
11111011 FB 251 59 ' (REM)
11111100 FC 252 60
11111101 FD 253 61
11111110 FE 254 62
11111111 FF 255 63

* *

78

PRODUCED IN AUSTRALIA
by

MICRO-80 PRODUCTS
P.O. BOX 213 GOODWOOD SA 5034

	Cover
	Table of Contents
	Introduction
	Part 1
	Level II ROM Map
	Reserved RAM and Device Addresses

	Part 2
	Table 1 - ORGANISATION OF ACC and AACC
	Table 2 - ARITHMETIC ROUTINES
	Table 3 - ARITHMETIC FUNCTIONS AND NUMBER CONVERSIONS
	Table 4 - DATA MOVEMENT
	Table 5 - COMPARE & TEST ROUTINES
	Table 6 - DATA CONVERSION ROUTINES
	Table 7 - INPUT ROUTINES
	CHARACTER INPUT ROUTINES
	STRING INPUT ROUTINES

	Table 9 - SINGLE BYTE OUTPUT ROUNTINES
	Table 10 - STRING OUTPUT ROUTINES
	DEMONSTRATION PROGRAM
	TAPE I/O ROUTINES
	DEMO TAPE I/O ROUTINE
	Table 11 - TAPE I/O AND CONTROL

	VARIABLE ORGANISATION AND VARIABLE LOCATING ROUTINES
	Table 12 - SPECIAL PURPOSE ROUTINES
	VARIABLE ORGANISATION

	Table 13 - ERROR ROUTINE ENTRY POINTS
	Table 14 - VIDEO CONTROL ROUTINES
	GRAPHICS
	KEYBOARD MEMORY
	DOS LINK ADDRESSES
	INTERCEPT ADDRESSES
	Table 15 - MISCELLANEOUS
	DATA AND TAPE FORMATS
	INITIALIZING MACHINE LANGUAGE SUBROUTINES
	USING MACHINE LANGUAGE PROGRAMS ON DISK SYSTEMS
	PORT 255

	APPENDIX 1 - SAMPLE PROGRAM
	APPENDIX 2 - CONVERSION TABLE

