




Written by James Farvour

Microsoft BASIC
Decoded & Other Mysteries
Foreword by Harvard Pennington

Edited by Jim Perry

Graphics by John Teal
Cover by Harvard Pennington

TRS-80 Information Series Volume 2



Contents

2

Foreword .............................................................................4
Chapter 1: Introduction .......................................................5

Overview.........................................................................6
Memory Utilization .........................................................6
Communications Region .................................................8
Level II Operation ...........................................................8
Input Phase ......................................................................8
Interpretation & Execution..............................................9
Verb Action ...................................................................11
Arithmetic & Math ........................................................11
I/O Drivers.....................................................................12
System Utilities .............................................................13
IPL.................................................................................13
Reset Processing (non disk)...........................................13
Reset Processing (disk) .................................................14
Disk BASIC...................................................................14

Chapter 2: Subroutines ......................................................15
I/O Calling Sequences ...................................................15
Keyboard Input..............................................................15

Scan Keyboard ..........................................................15
Wait For Keyboard....................................................16
Wait For Line ............................................................16

Video Output .................................................................16
Video Display............................................................16
Clear Screen ..............................................................17
Blink Asterisk............................................................17

Printer Output ................................................................17
Print Character...........................................................17
Get Printer Status ......................................................17

Cassette I/O ...................................................................18
Select & Turn On Motor ...........................................18
Write Leader..............................................................18
Read Leader...............................................................18
Read One Byte ..........................................................18
Write One Byte..........................................................18

Conversion Routines .....................................................19
Data Type Conversions .................................................19

FP To Integer.............................................................19
Integer To SP.............................................................19
Integer to DP .............................................................19

ASCII to Numeric .........................................................19
ASCII To Integer.......................................................19
ASCII To Binary .......................................................19
ASCII To DP.............................................................20

Binary To ASCII ...........................................................20
HL To ASCII & Display ...........................................20
Integer To ASCII.......................................................20
FP To ASCII..............................................................20

Arithmetic Routines ......................................................21
Integer Routines ............................................................21

Integer Addition ........................................................21
Integer Subtraction ....................................................21
Integer Multiplication................................................21
Integer Division.........................................................21
Integer Comparison ...................................................21

Single Precision Routines..............................................21
SP Addition ...............................................................22
SP Subtraction ...........................................................22
SP Multiply ...............................................................22
SP Divide ..................................................................22
SP Comparison..........................................................22

Double Precision Routines ............................................22
DP Addition...............................................................22
DP Subtraction ..........................................................23
DP Multiply...............................................................23
DP Divide..................................................................23
DP Comparison .........................................................23

Math Routines ...............................................................23
Absolute Value..........................................................23
Return Integer............................................................23
Arctangent .................................................................24
Cosine........................................................................24
Raise Natural Base ....................................................24
Raise X To Power Of Y ............................................24
Natural Log ...............................................................25
FP To Integer.............................................................25
Reseed Random Number...........................................25
Random Number .......................................................25
Sine............................................................................25
Square Root ...............................................................25
Tangent......................................................................26

Function Derivation.......................................................26
System Functions ..........................................................27

Compare Symbol.......................................................27
Examine Next Symbol...............................................27
Compare DE:HL .......................................................27
Test Data Mode .........................................................27
DOS Function Call ....................................................28
Load DEBUG............................................................28
Interrupt Entry Point..................................................28
SP In BC:DE To WRA1............................................28
SP Pointed To By HL To WRA1 ..............................28
SP Into BC:DE ..........................................................29
SP From WRA1 Into BC:DE ....................................29
WRA1 To Stack ........................................................29
General Purpose Move ..............................................29
Variable Move...........................................................29
String Move...............................................................30

BASIC Functions ..........................................................30
Search For Line Number ...........................................30
Find Address Of Variable..........................................30
GOSUB .....................................................................31
TRON........................................................................31
TROFF ......................................................................31
RETURN...................................................................31
Write Message...........................................................31
Amount Of Free Memory..........................................31
Print Message ............................................................32
Number Representation.............................................32

Chapter 3: Cassette & Disk ...............................................33



Microsoft BASIC Decoded
& Other Mysteries

3

Cassette I/O....................................................................33
Cassette Format .............................................................34
SYSTEM Format ...........................................................34
Disk I/O .........................................................................35
Disk Controller Commands ...........................................35
Disk Programming Details.............................................37
DOS Exits ......................................................................37
Disk BASIC Exits..........................................................38
Disk Tables ....................................................................38
Disk Track Format .........................................................39
Granule Allocation Table...............................................39
Hash Index Table...........................................................39
Disk DCB ......................................................................40
Disk Directory ...............................................................41

Chapter 4: Addresses & Tables .........................................42
System Memory Map.....................................................42
Internal Tables ...............................................................42
Reserved Word List .......................................................42
Precedence Operator Values ..........................................43
Arithmetic Routines.......................................................43
Data Conversion Routines .............................................43
Verb Action Routines ....................................................43
Error Code Table ...........................................................44
External Tables ..............................................................44
Mode Table....................................................................44
Program Statement Table...............................................44
Variable List Table ........................................................45
Literal String Pool Table ...............................................46
Communications Region................................................46
DCB Descriptions ..........................................................48

Video DCB ................................................................48
Keyboard DCB ..........................................................48
Printer DCB ...............................................................48

Interrupt Vectors............................................................48
Memory Mapped I/O .....................................................49
Stack Frame Configurations ..........................................49

FOR Stack..................................................................49
GOSUB Stack............................................................50
Expression Evaluation ...............................................50

DOS Request Codes.......................................................51

Chapter 5: Example 1 ........................................................52
A BASIC SORT Verb ...................................................52

Chapter 6: Example 2 ........................................................55
BASIC Overlay Program...............................................55

Chapter 7: BASIC Decoded.............................................. 58
the new ROMs .............................................................. 58

Chapter 8: BASIC Decoded.............................................. 61
Comments Disassembled ROMs................................... 63

Acknowledgments

This book has been a long time in its creation, without the
help, advice and support of many people it would not have
been possible. In particular thanks are due to Rosemary
Montoya for her days of keyboarding, David Moore for
hours of example testing, Jerry De Diemar, Mary and MG
at Helens place for turning the Electric Pencil files into type
and Al Krug for his 24 hour message service.

This book was produced with the aid of several TRS-80
computer systems, an NEC Spinterm printer, the Electric
Pencil word processor with a special communications
package to interface to an Itek Quadritek typesetter, plus
lots of coffee and cigarettes.

Copyright 1981 James Farvour
Microsoft BASIC Decoded & Other Mysteries
ISBN 0 - 936200 - 0l - 4

The small print

   All rights reserved. No Part of this book may be reproduced by any
means without the express written permission of the publisher. Example
programs are for personal use only. Every reasonable effort has been made
to ensure accuracy throughout this book, but the author and publisher can
assume no responsibility for any errors or omissions. No liability is
assumed for damages resulting from the use of information contained
herein.

First Edition
First Printing

January 1981

Published by

IJG Computer Services

1260 W Foothill Blvd,
Upland, CA 91786 USA

Microsoft is a registered trademark of the Microsoft Corporation.
Radio Shack and TRS-80 are trademarks of the Tandy Corp.
NEWDOS and NEWDOS + are trademarks of Apparat Inc.
BASIC is a trademark of the Trustees of Dartmouth College.



4

Foreword

A little over a year ago, I said to Jim Farvour, 'Jim, why
don't you write a book about Microsoft BASIC and the
TRS-80?  You have the talent and the expertise and
thousands of TRS-80 owners need help, especially me!'.
Needless to say, he agreed.  Now it's one thing to SAY you
are going to write a book and quite another thing to actually
do it.

Writing a book requires fantastic discipline, thorough
knowledge of the subject matter, talent and the ability to
communicate with the reader.  Jim Farvour has all of the
above.

This is no ordinary book.  It is the most complete, clear,
detailed explanation and documentation you will see on this
or any similar subject.

There have been other books and pamphlets purporting to
explain the TRS-80 BASIC interpreter and operating
system.  They have had some value, but only to experienced
machine language programmers - and even then these books
had many short-comings.

This book will delight both professional and beginner.
Besides walking you through power-up and reset (with and
without disk) there are detailed explanations of every single
area of the software system's operation.  Examples, tables,
and flow-charts complement the most extensively
commented listing you have ever seen.  There are over 7000
comments to Microsoft's BASIC interpreter and operating
system.

These are not the usual machine language programmer's
comments whose cryptic and obscure meanings leave more
questions than answers.  These are English comments that
anyone can understand.  Not only that, but when a comment
needs more explanation, you will find it on the next page.

This book even has something for anyone running Microsoft
BASIC on a Z-80 based computer.  Microsoft, in its great
wisdom, has a system that generates similar code for similar
machines.  Although you may find that the code is
organized differently in your Heath or Sorceror the routines
are, for the most part, identical!

Is this a great book?  It's an incredible book!  It may well be
the most useful book you will ever own.

H.C. Pennington

November 1980



5

Chapter 1

Introduction

Level II consists of a rudimentary operating system and a
BASIC language interpreter. Taken together, they are
called the Level II ROM System.  There is a extension to
the Level II system called the Disk Operating System
DOS, and also an extension to the BASIC portion of
Level II called Disk BASIC.

Both Level II and DOS are considered independent
operating systems. How the two systems co-exist and co-
operate is a partial subject of this book. The real purpose
is to describe the fundamental operations of a Level II
ROM so that assembly language programmers can make
effective use of the system.

A computer without an operating system is of little use.
The reason we need an operating system is to provide a
means of communication between the computer and the
user. This means getting it to 'listen' to the keyboard so
that it will know what we want, and having it tell us
what's going on by putting messages on the video. When
we write programs, which tell the computer what to do,
there has to be a program inside the machine that's
listening to us. This program is called an operating
system.

It is impossible to give an exact definition of an
operating system. There are thousands of them, and each
has slight variations that distinguish it from others. These
variations are the result of providing specific user
features or making use of hardware features unique to the
machine that the operating system is designed for. In
spite of the differences between operating systems, the
fundamental internal routines on most are very similar -
at least from a functional point of view.

The common components in a general purpose, single
user system, such as Level II would consist of:

1. Drivers (programs) for all peripheral devices such as the
keyboard, video, printer, and cassette.

2. A language processor capability (such as BASIC, COBOL,
or FORTRAN) of some kind.

3. Supporting object time routines for any language provided.
This would include math and arithmetic routines, which are
implied by the presence of a language.

4. Ancillary support routines used by the language processor
and its implied routines. These are usually invisible to the
user. They manage resources such as memory and tables, and
control access to peripheral devices.

5. A simple monitoring program that continually monitors the
keyboard, or other system input device, looking for user input.

6. System utility commands. These vary considerably from
system to system. Examples from Level II would be: EDIT,
LIST, CLOAD, etc.

Remember that these definitions are very general.  The
exact definition of any individual component is specific
to each operating system. In the case of the Level II
ROMs we'll be exploring each of the components in
more detail later on. First we will discuss how the
operating system gets into the machine to begin with.

Generally, there are two ways an operating system can
be loaded. The operating system can be permanently
recorded in a special type of memory called Read Only
Memory (ROM) supplied with the system. In this case
the operating system is always present and needs only to
be entered at its starting point, to initialize the system
and begin accepting commands.



6

Another way of getting the operating system into the
machine is to read it in from some external storage medium
such as a disk or cassette.  In this case, however, we need a
program to read the operating system into the machine.
This program is called an Initial Program Loader (or IPL),
and must be entered by hand or exist in ROM somewhere
on the system.  For the sake of simplicity, we'll assume that
all machines have at least an IPL ROM or ROM based
operating system.

In the TRS-80 Model I we have a combination of both
ROM and disk based operating systems. A Level II
machine has a ROM system which occupies the first 12K of
addressable memory. When the Power On or Reset button
is pressed control is unconditionally passed to location 0 or
66 respectively. Stored at these locations are JUMPS to
another region of ROM which initializes the system and
then prints the user prompt 'MEMORY SIZE?'.

In a Level II system with disks, the same ROM program
still occupies the first 12K of memory, however during
Power On or Reset processing another operating system is
read from disk and loaded into memory. This Disk
Operating System (DOS) occupies 5K of RAM starting at
16K. After being loaded control is then transferred to DOS
which initializes itself and displays the prompt 'DOS
READY'. So, even though a ROM operating system is
always present, if the machine has disks another operating
system is loaded also. In this case, the Level II ROM acts as
an IPL ROM.

It should be emphasized that the DOS and ROM operating
systems are complementary and co-operative. Each
provides specific features that the other lacks. Elementary
functions required by DOS are found in ROM, and DOS
contains extensions to the ROM, as well as unique capabil-
ities of its own.

Level II And DOS Overview

Level II is a stand alone operating system that can run by
itself. It is always present, and contains the BASIC
interpreter plus support routines necessary to execute
BASIC programs. It also has the facility to load programs
from cassette, or save them onto a cassette.

A Disk Operating System, (such as TRSDOS or NEWDOS)
is an extension to Level II that is loaded from disk during
the IPL sequence. It differs from Level II in several ways.
First, it has no BASIC interpreter, in order to key-in BASIC
statements control must be passed from DOS to Level II.
This is done by typing the DOS command BASIC. As well
as transferring control from DOS to Level II this command
also performs important initialization operations which will
be discussed later.  Second, the commands recognized by
DOS are usually disk utility programs not embedded
routines - such as those in Level II. This means they must
be loaded from disk before they can be used. In turn this
means that there must be an area of RAM reserved for the
loading and execution of these utilities.

Memory Utilization

From the description of DOS and Level II we can see that
portions of RAM will be used differently depending on
which operating system is being used. Immediately after
IPL the memory is setup for each of the operating systems
as shown in figure 1.1 below. Notice the position of the
Central Processing Unit (CPU) in each part of the figure.

                 Level II                     Level II
               ( no disk )                  ( with disk }

0K -->
CPU         Level II          ROM         Level II
Here --->   ROM             Addresses     ROM
12K -->   ---------------  ------------  ----------------
           Communications     RAM         Communications
           Region           Addresses     Region
16k -->   ---------------                ----------------
                                           Dos Nucleus    <-- CPU
                                19k -->  ----------------    Here
                                           Overlay Area
              Free              21k -->  ----------------
             Space
              List                            Free
                                             Space
end of                                        List
memory

Figure 1

Figure 1.1: Memory organization after the Initial Program Load.

A Level II system with disks that has had a BASIC
command executed would appear as in figure 1.2.

The first 16K of memory is dedicated to Level II and the
Communications Region regardless of the operating system
being used.



7

Starting at the end of the Communications Region or the
Disk BASIC area, depending on the system being used, is
the part of memory that will be used by Level II for storing
a BASIC program and its variables. This part of memory
can also be used by the programmer for keeping assembly
language programs. A detailed description of this area for a
Level II system without disks follows.

0K -->
             Level II
                ROM
12K -->   ----------------
           Communications
               Region
16k -->   ----------------
            DOS Nucleus
19k -->   ----------------
            Overlay Area
19k -->   ----------------
             Disk BASIC
19k -->   ----------------
               Free
               Space

  end of            List
  memory -->

Figure 1.2: Memory allocation for a system with disks, after a BASIC
command.

Although figure 1.3 shows the sub-divisions of RAM as
fixed they are not!  All of the areas may be moved up or
down depending on what actions you perform.  Inserting or
deleting a line from a program, for example, causes the
BASIC Program Table (called the Program Statement Table
or PST) to increase or decrease in size.  Likewise defining a
new variable would increase the length of the variables list.
Since the origin of these tables may shift, their addresses
are kept in fixed locations in the Communications Region.
This allows the tables to be moved about as required, and
provides a mechanism for letting other users know where
they are.

           Level II and
           Comm. Region
16K -->   ---------------
               BASIC
              Program
               Table
          ---------------
               BASIC
              Program
             Variables
          ---------------

          ---------------
               Stack
          ---------------
            String Area

Figure 1.3: Allocation of memory in a Level II system without disks.

The Program Statement Table (PST) contains source
statements for a BASIC program in a compressed format
(reserved words have been replaced with tokens repre-
senting their meaning). The starting address for this table is
fixed, but its ending address varies with the size of the
program. As program statements are added or deleted, the
end of the PST moves accordingly. A complete description
of this table can be found in chapter 4 (page 44).

Following the PST is the Variable List Table (or VLT).
This contains the names and values for all of the variables
used in a BASIC program. It is partitioned into four sub-
tables according to the following variable types: simple
variables (non dimensioned); single dimensioned lists;
doubly dimensioned lists and triple dimensioned lists.
Variable names and their values are stored as they are
encountered during the execution of a program. The
variable table will change in size as new variables are added
to a program, and removing variables will cause the table to
shrink. After a variable is defined it remains in the table,
until the system is reinitialized. For a full description of this
table see chapter 4 (page 45).

Not shown in figure 1.3 is the Free Space List or FSL. It is
a section of memory that initially extends from the end of
the Communications Region to the lower boundary of the
String Area. There are two parts to this list, the first is used
to assign space for the PST and VLT. For these areas space
is assigned from low to high memory. The second part of
the FSL is used as the Stack area. This space is assigned in
the opposite direction - beginning at the top of the String
Area and working down towards Level II.

The stack area shown is a dynamic (changeable) table. It is
used by the Level II and DOS systems as a temporary
storage area for subroutine return addresses and the
hardware registers. Any CALL or RST instruction will
unconditionally cause the address of the following instruc-
tion to be saved (PUSH'd) onto the stack, and the stack
pointer is automatically decremented to the next lower
sequential address. Execution of a RET instruction (used
when exiting from a subroutine) removes two bytes from
the stack (the equivalent of a POP instruction) and reduces
the stack pointer by two.

Storage space in the stack area can be allocated by a
program, but it requires careful planning. Some BASIC
subroutines such as the FOR-NEXT routine, save all values
related to their operation on the stack. In the FOR NEXT
case an eighteen byte block (called a frame) is PUSH'd onto
the stack and left there until the FOR-NEXT loop is
completed.

Before space is assigned in either part of the FSL (except
for Stack instructions such as CALL or PUSH) a test is
made (via a ROM call) to insure there is enough room. If
there is insufficient space an Out of Memory error is given
(OM). See chapter 2 (page 31) for a description of the ROM
calls used to return the amount of space available in the
FSL.



8

The last area shown in the memory profile is the string area.
This is a fixed length table that starts at the end of memory
and works toward low memory.  The size of this area may
be specified by the CLEAR command.  Its default size is 50
bytes.  String variables are stored in this area, however
strings made equal to strings, String$ and quoted strings are
stored in the PST.

Earlier it was mentioned that there are six general
components that form an operating system.  Because of the
way Level II was put together the individual pieces for
some components are scattered around in ROM, instead of
being collected together in a single area.  Figure 1.4 is an
approximate memory map of addresses in Level II.  For
exact addresses and description of these regions see chapter
4.

                      Level II ROM

Decimal Address
           0000 -->
                       Peripheral
                        Drivers
           1800 -->  ---------------
                       Math and
                       Arithmetic
           5600 -->  ---------------
                        Support
           6700 -->  ---------------
                       Monitoring
           7100 -->  ---------------
                         BASIC
                       Interpreter
          11000 -->  ---------------
                        Utilities
          12000 -->

           Figure 1.4: Approximate memory map of Level II addresses

The Communications Region

The Communications Region is a scratch pad memory for
the Level II ROMs.  An example of addresses stored here
are those for the PST and the variables list. Also BASIC
supports variable types that require more space than the
working registers can provide, and as a result certain
arithmetic operations require temporary storage in this
region.

Another important use of the Communications Region is to
provide a link between Level II and DOS - for passing
addresses, and data, back and forth.  The DOS Exit
addresses and Disk BASIC addresses are kept in this area.
As mentioned earlier a Level II system, with disks, begins
execution in the DOS system.  Control is passed from DOS
to Level II only after the command BASIC has been
executed (which also updates the Communications Region
by storing the DOS Exits and Disk BASIC addresses).

Because Level II is in ROM it is impractical to try and
modify it.  Yet, changes to an operating system are a
practical necessity that must be considered.  In order to
solve this problem the Level II system was written with
jumps to an area in RAM, so that future changes could be
incorporated into the ROM system.  Those jumps are called
DOS Exits, and on a system without a DOS they simply
return to Level II.  When a DOS is present, the jump

addresses are changed to addresses within Disk BASIC
which allows changes to be made to the way Level II
operates.

The Disk BASIC addresses are used by Level II when a
Disk BASIC command such as GET or PUT is en-
countered.  They are needed because the code that supports
those operations is not present in Level II.  It is a part of
Disk BASIC that is loaded into RAM, and since it could be
loaded anywhere Level II needs some way of locating it.
The Disk BASIC exits are a group of fixed addresses,
known to both Level II and Disk BASIC, which allows
Level II to pass control to Disk BASIC for certain verb
action routines.

Another interesting aspect of the Communications Region
is that it contains a section of code called the Divide
Support Routine.  This code is called by the division
subroutines, to perform subtraction and test operations.  It is
copied from Level II to the RAM Communications Region
during the IPL sequence.  When a DOS is present it is
moved from ROM to RAM by the DOS utility program
BASIC.

An assembly language program using the Level II division
routine on a disk system which has not had the BASIC
command executed will not work because the Divide
Support Routine is not in memory.  Either execute the
BASIC utility or copy the support routine to RAM, when
executing assembly language routines that make division
calls.

Level II Operation

Earlier in this chapter there was a brief description of six
components which are generally found in all operating
systems.  Using those components as a guideline, Level II
can be divided into the following six parts:

Part 1 ... Input or scanner routine.
Part 2 ... Interpretation and execution routine.
Part 3 ... Verb action routines
Part 4 ... Arithmetic and math routines
Part 5 ... I/O driver routines.
Part 6 ... System function routines.

There is another part common to all systems which is not
included in the above list.  This part deals with system
initialization (IPL or Reset processing), and it will be
discussed separately.  Continuing with the six parts of Level
II, we will begin at the point where the system is ready to
accept the first statement or command.  This is called the
Input Phase.

Part 1 - Input Phase

The Input Phase is a common part of all operating systems.
Its function is to accept keyboard input and respond to the
commands received.  In the case of a Level II system it
serves a dual purpose - both system commands and BASIC
program statements are processed by this code.



9

Entry to the Input Scan routine is at.  This is an initial entry
point that is usually only called once.  The message
'READY' is printed, and a DOS Exit (41AC) is taken
before the main loop is entered.  Systems without disks
jump to this point automatically, at the end of IPL
processing.  For systems with disks, this code is entered by
the DOS utility program BASIC at the end of its
processing.  The Input or Scanner phase is summarized
below.

1. Get next line of input from keyboard.
2. Replace reserved words with tokens.
3. Test for a system command such as RUN, CLOAD, etc. or a
DIRECT STATEMENT (BASIC statement without a line number)
and branch to 6 if true.
4. Store tokenized statement in program statement table.
5. Return to step 1.
6. Begin interpretation and execution

The Input Phase loop begins at 1A33. After printing the
prompt >, or a line number if in the Auto Mode a CALL to
03612 is made to read the next line.  Then the line number
is converted from ASCII to binary with a CALL to 1E5A.
The statement is scanned and reserved words are replaced
by tokens (CALL 1BC0).  Immediately after tokenization a
DOS Exit to 41B2 is taken.  Upon return a test for a line
number is made.  If none is found a System Command or
Direct Statement is assumed, and control is passed to the
Execution Driver at 1D5A.  On systems without disks this
test is made at 1AA4.  On a disk system the test, and
branch, is made at the DOS Exit 41B2 called from 1AA1.

If a line number is present the incoming line is added to the
PST, the pointers linking each line are updated by the
subroutine at 1AFC to 1B0E.  If the line replaces an
existing line, the subroutine at 2BE4 is called to move all of
the following lines down over the line being replaced.

When in the Auto Mode the current line number is kept in
40E2 and 40E3 the increment between lines is stored at
40E4. The code from 1A3F to 1A73 prints and maintains
the automatic line number value.  Null lines (statements
consisting of a line number only) are discarded.  They are
detected by a test at 1ABF.

Part 2 - Interpretation & Execution

Statement and command execution in a Level II system is
by interpretation.  This means that a routine dedicated to the
statement type, or command, is called to interpret each line
and perform the necessary operations.  This is a common
method for system command execution.  With DOS, for
example, separate modules are loaded for commands such
as FORMAT and COPY. In some Systems, commands
which are related may be combined into a single module,
after the module has been loaded it decides which sub-
function to execute by examining (interpreting) the name
which called it.

Program execution by interpretation is not common except
on microcomputers, and even then only for selected
languages such as BASIC and APL. The alternative to an
interpreter is program compilation and execution, with the
use of a compiler.

Compilers translate source statements into directly exe-
cutable machine language code (called object code).  The
object code is then loaded into RAM as a separate step
using a utility program called a Loader.  After loading the
object code into RAM, control is passed to it and it executes
almost independently of the operating system.

Not all source code is converted to object code by a
compiler.  Some statements such as READ and WRITE or
functions such as SINE or COSINE may be recognized by
the compiler, and rather than generate code for them,
subroutine calls for the specific routines will be produced.

These routines are in object code form in a library file.
When the loader loads the object code, for the compiled
program, any subroutine calls are satisfied (the sub-
routines are loaded) from the library file.  A loader that will
take modules from a library is called a linking loader.

An interpreter operation is much simpler by comparison.
Each source statement is scanned for reserved words such
as FOR, IF, GOTO, etc..  Every reserved word is replaced
by a unique numeric value called a token then the tokenized
source statement is saved.  In Level II it is saved in the
Program Statement Table.  When the program is run control
goes to an execution driver which scans each statement
looking for a token.  When one is found control is given to
a routine associated with that token.  These token routines
(also called verb action routines) perform syntax checks
such as testing for valid data types, commas in the correct
place, and closing parenthesis.  In a compiler entered action
routine there is no syntax checking because that would have
been done by the compiler - and the routine would only be
called if all of the parameters were correct.



10

In Level II the execution phase is entered when a statement
without a line number has been accepted, or when a RUN
command is given.  This may be a system command or a
single BASIC statement that is to be executed.  When a
RUN command is received an entire BASIC program is to
be executed.  The Execution driver loop starts at 1D5A and
ends at 1DE1.  These addresses are deceptive though,
because portions of this code are shared with other routines.

The steps in this phase are summarized as follows. For
more details see figure 1.5.

1. Get the first character from the current line in the PST. If the end
of the PST has been reached then return to the Input Phase.
2. If the character is not a token. go to step 6.
3. If the token is greater than BC it must be exactly FA (MID$),
otherwise a syntax error is given.
4. If the token is less than BC. use it as an index into the verb action
table.
5. Go to action routine and return to step 1.
6. Assignment section. Locate variable name, if it's not defined, then
create it.
7. Call expression evaluation.
8. Return to step 1.

Figure 1.5: Flowchart of the execution driver routine.

The Execution driver begins by loading the first character
from the current line in the PST. This character is tested to
see if it is a token (80-FA) if not, the current line is
assumed to be an assignment statement such as:

A = 1.

The assignment statement routine begins at 1F21. It is
similar to the other action routines, except that it is entered

directly rather than through a table look-up process.  Before
it is entered a return address of 1D1E in the execution
driver is PUSH'd onto the stack, so it can exit as any other
action routine.

The assignment routine assumes that the pointer for the
current line is immediately to the left of the variable name
to be assigned. It locates, or creates an entry for the variable
name, tests for an equals () after the name - and then
CALLs 2337. The routine at this location evaluates the
expression. The result is converted to the correct mode, and
stored at the variable address.

Assuming that a good token was found as the first
character, a second test is made to see if it is valid as the
first token in a line.  Valid tokens which can occur at the
start of a line are 80 - BB.  The tokens BC - F9 can only
occur as part of an assignment statement or in a particular
sequence such as 8F (IF) 'Expression' CA (then) XXXX.
The MID$ token FA is the only exception to this rule.
There is a test for it at 2AE7 where a direct jump to its Disk
BASIC vector (41D9) is taken.  If the token is between 80
and BB it is used as an index into a verb action routine table
and the address of the action routine, for that token is
located. Control is then passed to that action routine which
will do all syntax checking and perform the required
function.

Parameters for the verb routines are the symbols in the
statement following the token.  Each routine knows what
legitimate characters to expect, and scans the input string
from left to right (starting just after the token) until the end
of the parameters are reached.  The end of the parameters
must coincide with the end of the statement, or a syntax
error is produced.

Symbols which terminate a parameter list vary for each
action routine.  Left parentheses ')' terminate all math and
string functions. A byte of machine zeros (00) stops
assignment statements, other routines may return to the
execution phase after verifying the presence of the required
value.

As each verb routine is completed control is returned to the
Execution driver, where a test for end of statement (EOS)
or a compound statement (:) is made.  The EOS is one byte
of machine zeros.  If EOS is detected the next line from the
Program Statement Table is fetched, and it becomes the
current input line to the Execution driver.

When a System Command or a Direct Statement has been
executed there is no pointer to the next statement, because
they would have been executed from the Input Phase's input
buffer.  This is in a different area than the PST where
BASIC program statements are stored.  When the RUN
command is executed, it makes the Execution driver get its
input from the PST.

When the end of a BASIC program, or a system command,
is reached, control is unconditionally passed to the END
verb which will eventually return to the Input Phase.  Any



11

errors detected during the Execution and Interpretation
phase cause control to be returned to the Input Phase after
printing an appropriate error code. An exception is the
syntax error, which exits directly to the edit mode.

Part 3 - Verb Action

The verb action routines are where the real work gets done.
There are action routines for all of the system commands
such as CLOAD, SYSTEM, CLEAR, AUTO as well as the
BASIC verbs such as FOR, IF, THEN, GOTO, etc.  In
addition there are action routines for all the math functions
and the Editor sub-commands.

Verb action routines continue analyzing the input string
beginning at the point where the Execution phase found the
verb token.  Like the Execution phase, they examine the
string in a left to right order looking for special characters
such as (,,), or commas and tokens unique to the verb being
executed.  If a required character is missing, or if an
illogical condition arises, a syntax error is generated.

The verb routines use a number of internal subroutines to
assist them while executing program statements.  These
internal routines may be thought of as part of the verb
action routines, even though they are used by many other
parts of the Level II system.

A good example of an internal routine is the expression
evaluation routine, which starts at 2337.  Any verb routine
that will allow, and has detected, an expression as one of its
arguments may CALL this routine.  Examples of verb
action routines that allow expressions in their arguments are
IF, FOR, and PRINT.  In turn the expression evaluation
routine will CALL other internal routines (such as 260D to
find the addresses of variables in expressions being
evaluated).  Since subscripted variables can have
expressions as their subscript, the find address routine may
in turn CALL back to the expression evaluation routine!

This type of processing is called recursion, and may be
forced by the following expression:

c0 = c(1a/bc(2d)/c(1*c0))

Other internal routines used by the verb action routines are :
skip to end of statement 1F05; search Stack for a FOR
frame 1936 and build a literal string pool entry 2865.

Any intermediate results, which may need to be carried
forward, are stored Work Register Area 1 (WRA1) in the
Communications Region.  Some verbs such as FOR build a
stack frame which can be searched for and recognized by
another verb such as NEXT.  All of the action routines
except MID$ are entered with the registers set as shown in
figure 1.6.  A full list of verb action routines, and their entry
points is given in chapter 4 (page 43).

    Register             Contents

     AF - Next element from code string
          following token.
          CARRY - if numeric
          No CARRY - if alpha
     BC - Address of the action routine
     DE - Address of action token in code string
     HL - Address of next element in code string

Figure 1.6: Register settings for verb action routine entry.

Part 4 - Arithmetic & Math

Before going into the Arithmetic and Math routines we
should review the arithmetic capabilities of the Z-80 CPU
and the BASIC interpreter.

The Z-80 supports 8 bit and 16 bit integer addition and
subtraction.  It does not support multiplication or division,
nor does it support floating point operations.  Its register set
consists of seven pairs of 16 bit registers.  All arithmetic
operations must take place between these registers.
Memory to register operations are not permitted.  Also
operations between registers are extremely restricted,
especially with 16 bit quantities.

The BASIC interpreter supports all operations e.g.,
addition, subtraction, multiplication, and division for three
types (Modes) of variables which are: integer, single
precision and double precision.  This support is provided by
internal subroutines which do the equivalent of a hardware
operation.  Because of the complexity of the software,
mixed mode operations, such as integer and single precision
are not supported.  Any attempt to mix variable types will
give unpredictable results.

The sizes for the variable types supported by BASIC are as
follows:

Integer………. 16 bits (15 bits 1 sign bit)
Single Precision .... 32 bits (8 bit biased exponent

plus 24 bit signed mantissa)
Double Precision …. 56 bits (8 bit biased exponent

plus 48 bit signed mantissa)



12

From this it is clear that the registers are not large enough to
hold two single or double precision values, even if floating
point operations were supported by the hardware.  Because
the numbers may be too big for the registers, and because of
the sub-steps the software must go through an area of RAM
must be used to support these operations

Within the Communications Region two areas have been
set aside to support these operations.  These areas are
labeled: Working Register Area 1 (WRAl) and Working
Register Area 2 (WRA2).  They occupy locations 411D to
4124 and 4127 to 412E respectively.  They are used to hold
one or two of the operands, depending on their type, and the
final results for all single and double precision operations.
A description of the Working Register Area follows.

Address Integer
Single

Precision
Double

Precision

411D LSB

411E NMSB

411F NMSB

4120 NMSB

4121 LSB LSB NMSB

4122 MSB NMSB NMSB

4123 MSB MSB

4124 Exponent Exponent

Where:
      LSB = Least significant byte
     NMSB = Next most significant byte
      MSB = Most significant byte

WRA2 has an identical format.

Figure 1.7: Working Register Area layout.

                      Integer

Destination Source
Register Operation Registers

HL Addition HL + DE
HL Subtraction HL - DE
HL Multiplication HL * DE

WRA1 Division DE / HL

                  Single Precision

   Destination Source
   Register Operation Registers

WRA1 Addition WRA1 + (BCDE)
WRA1 Subtraction WRA1 - (BCDE)
WRA1 Multiplication WRA1 * (BCDE)
WRA1 Division WRA1 / (BcDE)

                 Double Precision

Destination Source
Register Operation Registers

WRA1 Addition WRA1 + WRA2
WRA1 Subtraction WRA1 - WRA2
WRA1 Multiplication WRA1 * WRA2
WRA1 Division WRA1 / WRA2

  Figure 1.8: Register arrangements used by arithmetic routines.

Because mixed mode operations are not supported integer
operations can only take place between integers, the same
being true for single and double precision values.  Since
there are four arithmetic operations ( +, -, *, and / ), and
three types of values, there must be twelve arithmetic
routines.  Each of these routines knows what type of values
it can operate on, and expects those values to be loaded into
the appropriate hardware or working registers before being
called.  Figure 1.8 shows the register assignments used by
the arithmetic routines.  These assignments are not valid for
the Math routines because they operate on a single value,
which is always assumed to be in WRA1.

The math routines have a problem in that they must perform
arithmetic operations, but they do not know the data type of
the argument they were given. To overcome this another
byte in the Communications Region has been reserved to
indicate the data type (Mode) of the variable in WRA1.
This location is called the Type flag. Its address is 40AF
and contains a code indicating the data type of the current
contents of WRAl. Its codes are:

CODE            DATA TYPE (MODE)

02 ............ Integer
03 ............ String
04 ............ Single precision
08 ............ Double precision

The math routines do not usually require that an argument
be a particular data type, but there are some exceptions (see
chapter 2, page xx, for details).

Part 5 - I/O Drivers

Drivers provide the elementary functional capabilities
necessary to operate a specific device.  Level II ROM
contains Input/Output (I/O) drivers for the keyboard, video,
parallel printer, and the cassette.  The disk drivers are part
of the DOS system and consequently will not be discussed.

All devices supported by Level II, with the exception of the
cassette, require a Device Control Block (DCB).  The
drivers use the DCB's to keep track of perishable informa-
tion, such as the cursor position on the video and the line
count on the printer.  The DCB's for the video, keyboard,
and printer are part of the Level II ROM.  Since information
must be stored into them, they are moved from ROM to
fixed addresses in RAM (within the Communications
Region) during IPL.

The Level II drivers must be called for each character that
is to be transmitted.  The drivers cannot cope with the
concept of records or files, all record blocking and de-
blocking is left to the user.  Level II has no general purpose
record management utilities.  For BASIC programs you
must use routines such as PRINT and INPUT to block off
each record.



13

When writing to a cassette, for example, the PRINT routine
produces a header of 256 zeroes, followed by an A5.  After
the header has been written each individual variable is
written as an ASCII string, with a blank space between each
variable, finally terminating with a carriage return.  Non
string variables are converted to their ASCII equivalent.

INPUT operation begins with a search for the 256 byte
header.  Then the A5 is skipped and all variables are read
into the line buffer until the carriage return is detected.
When the INPUT is completed all variables are converted
to their correct form and moved to the VLT.

The keyboard, video and line printer drivers can be entered
directly or through a general purpose driver entry point at
03C2.  Specific calling sequences for each of these drivers
are given in chapter 2.

The cassette driver is different from the other drivers in
several respects.  It does its I/O in a serial bit mode whereas
all of the other drivers work in a byte (or character) mode.
This means that the cassette driver must transmit data on a
bit-by-bit basis.  The transmission of each bit is quite
complex and involves many steps.  Because of the timing
involved, cassette I/O in a disk based system, must be done
with the clock off (interrupts inhibited).  For more details
on cassette I/O see chapter 4.

Part 6 - System Utilities

System utilities in Level II ROM are the Direct Com-
mands:
AUTO, CLEAR, CSAVE, CLOAD, CLEAR, CONT,
DELETE, EDIT, LIST, NEW, RUN, SYSTEM, TROFF
and TRON.  These commands may be intermixed with
BASIC program statements.  However, they are executed
immediately rather than being stored in the program
statement table (PST).  After executing a Direct Command,
control returns to the Input Phase.

After an entire BASIC program has been entered (either
through the keyboard or via CLOAD or LOAD, on a disk
system), it must be executed by using the RUN command
This command is no different from the other system
commands except that it causes the BASIC program in the
PST to be executed (the Execution Phase is entered).  As
with other system commands, when the BASIC program
terminates, control is returned to the Input Phase.

System Flow During IPL

The IPL sequence has already been discussed in general
terms.  A complete description of the procedure follows.
The description is divided into separate sections for disk
and non-disk systems.

Reset Processing (non-disk)

Operations for this state begin at absolute location zero
when the Reset button is pressed.  From there control is
passed to 0674 where the following takes place.
00UFC
  A) Ports FF (255 decimal) to 80 (128 decimal) are
initialized to zero.  This clears the cassette and selects 64
characters per line on the video.

  B) The code from 06D2 to 0707 is moved to 4000 - 4035.
This initializes addresses for the restart vectors at 8, 10, 18
and 20 (hex) to jump to their normal locations in Level II.
Locations 400C and 400F are initialized to RETURNs.

If a disk system is being IPL'd 400C and 400F will be
modified to JUMP instructions with appropriate addresses
by SYS0 during the disk part of IPL.  The keyboard, video,
and line printer DCB's are moved from ROM to RAM
beginning at address' 4015 to 402C after moving the DCB's
locations 402D, 4030, 4032 and 4033 are initialized for
non-disk usage.  They will be updated by SYS0 if a disk
system is being IPL'd.

   C) Memory from 4036 to 4062 is set to machine zeros.
(00)

After memory is zeroed, control is passed to location 0075
where the following takes place:
00UFC
  A) The division support routine is moved from
@FT218F7-191B to 4080-40A6.  This range also includes
address pointers for the program statement table.  Location
41E5 is initialized to:

LD A, (2C00)

  B) The input buffer address for the scanner routine is set
to 41E5.  This will be the buffer area used to store each line
received during the Input Phase.

  C) The Disk BASIC entry vectors 4152-41A5 are
initialized to a JMP to 012D.  This will cause an L3
ERROR if any Disk BASIC features are used by the
program.  Next, locations 41A6-41E2 (DOS exits) are set to
returns (RETs).  41E8 is set to zero and the current stack
pointer (CSP) is set to 41F8.  (We need a stack at this point
because CALL statements will be executed during the rest
of the IPL sequence and they require a stack to save the
return address).

  D) A subroutine at 1B8F is called.  It resets the stack to
434C and initializes 40E8 to 404A.  It then initializes the
literal string pool table as empty, sets the current output
device to the video, flushes the print buffer and turns off the
cassette.  The FOR statement flag is set to zero, a zero is
stored as the first value on the stack and control is returned
to 00B2.

  E) The screen is cleared, and the message 'MEMORY
SIZE' is printed.  Following that, the response is accepted



14

and tested, then stored in 40B1.  Fifty words of memory are
allotted for the string area and its lower boundary address is
stored in 40A0.

F) Another subroutine at 1B4D is called to turn Trace off,
initialize the starting address of the simple variables (40F9),
and the program statement table (40A4).  The variable type
table 411A is set to single precision for all variables, and a
RESTORE is done.  Eventually control is returned to 00FC.

G) At 00FC the message 'RADIO SHACK Level II BASIC'
is printed and control is passed to the Input Phase.

Reset Processing (disk systems)

Operations for this state begin at location 0000 and jump
immediately to 0674.  The code described in paragraphs A,
B, and C for RESET processing (non-disk systems on page
xx) is common to both IPL sequences.  After the procedure
described in paragraph C has taken place a test is made to
determine if there are disks in the system.  If there are no
disk drives attached, control goes to 0075, otherwise.
00UFC
A) Disk drive zero is selected and positioned to track 0
sector 0.  From this position the sector loader (BOOT/SYS)
is read into RAM locations 4200 - 4455. Because the sector
loader is written in absolute form it can be executed as soon
as the READ is finished.

After the READ finishes, control is passed to the sector
loader which positions the disk to track 11 sector 4.  This
sector is then read into an internal buffer at 4D00.  The
sector read contains the directory entry for SYS0 in the first
32 bytes.  Using this data the sector loader computes the
track and sector address for SYS0 and reads the first sector
of it into 4D00.

B) Following the READ, the binary data is unpacked and
moved to its specified address in RAM.  Note that SYS0 is
not written in absolute format so it cannot be read directly
into memory and executed.  It must be decoded and moved
by the sector loader.  Once this is done control is passed to
SYS0 beginning at address 4200.

C) The following description for SYS0 applies to
NEWDOS systems only.  It begins by determining the
amount of RAM memory and storing its own keyboard
driver address in the keyboard DCB at 4015.  The clock
interrupt vector address (4012) is initialized to a CALL
4518.  Next, more addresses are initialized and the
NEWDOS header message is written.

D) After writing the header, a test for a carriage return on
the keyboard is made.  If one is found, the test for an
AUTO procedure is skipped and control passes immedi-
ately to 4400 were the DOS Input SCANNER phase is
initiated.

Assuming a carriage return was not detected the Granule
Allocation Table (GAT) sector (track 11 sector 0) is read
and the E0 byte is tested for a carriage return value.  Again,
if one is found (the default case) control goes to 4400,
otherwise a 20 byte message starting at byte E0 of the GAT
sector is printed.  Then control is passed to 4405 where the
AUTO procedure is started.  Following execution of the
AUTO procedure control will be passed to the DOS Input
Phase which starts at 4400.

Disk BASIC

One of the DOS commands is a utility program called
BASIC.  In addition to providing a means of transferring
control from DOS to Level II, it contains the interpretation
and execution code for the following Disk BASIC
statements:

TRSDOS and NEWDOS
CVI     CVS     CVD     MKI$    MKS$    MKD$    DEFFN  DEFUSR
TIME$   CLOSE   FIELD   GET     PUT     AS      LOAD   SAVE
KILL    MERGE   NAME    LSET    RSET    INSTR   LINE   &H
&O      CMD"S"  CMD"T"  CMD"R"  CMD"D"  CMD"A"  USR0-USR9
MID$(left side of equation)    OPEN"R"  OPEN"O" OPEN"I"

NEWDOS only
OPEN"E"  RENUM   REF   CMD"E"    CMD"DOS command"

An additional command peculiar to TRSDOS only is:
         CMD"X", <ENTER>  - Version 2.1
         CMD"#", <ENTER>  - Version 2.2 & 2.3

These hidden, and undocumented commands display a
'secret' copyright notice by Microsoft.  Also undocumented
is CMD'A' which performs the same function as CMD'S'.

Disk BASIC runs as an extension to Level II.  After being
loaded, it initializes the following section of the Com-
munications Region:
00UFC
1. DOS exits at 41A6 - 41E2 are changed from RETURN's
to jumps to locations within the Disk BASIC utility.

2. The Disk BASIC exits at 4152 - 41A3 are changed from
JP 12D L3 syntax error jumps to addresses of verb action
routines within Disk BASIC.

Following the initialization of the Communications Region,
DCBs and sector buffers for three disk files are allocated at
the end of Disk BASIC's code.  Control is then given to the
Input Scanner in Level II (1A19).

Disk BASIC will be re-entered to execute any Disk BASIC
statement, or whenever a DOS Exit is taken from Level II.
The Disk BASIC entry points are entered as though they are
verb action routines.  When finished control returns to the
execution driver.

Note: Disk BASIC occupies locations 5200 - 5BAD
(NEWDOS system).  Each file reserved will require an
additional (32 256 decimal) bytes of storage.  Assembly
programs should take care not to disturb this region when
running in conjunction with a BASIC program.



15

Chapter 2

Subroutines

Level II has many useful subroutines which can be used by
assembly language programs.  This chapter describes a
good number of the entry points to these subroutines.
However there are many more routines than those described
here.  Using the addresses provided as a guide, all of the
Level II routines dealing with a particular function may be
easily located.

Before using the math or arithmetic calls study the working
register concept and the mode flag (see chapter 1 page 14).
Also, remember that the Division Support Routine (see
chapter 1 page 10) is loaded automatically only when
IPL'ing a non-disk system.  On disk systems it is loaded by
the Disk BASIC utility.  If you are using a disk system and
executing an assembly language program, which uses the
any of the math or arithmetic routines that require division,
you must enter BASIC first or load the Division Support
Routine from within your program.

The I/O calling sequences described are for Level II only.
The TRSDOS and Disk BASIC Reference Manual contains
the DOS calling sequences for disk I/O.

The SYSTEM calls and BASIC functions are somewhat
specialized, consequently they may not always be useful for
an application written entirely in assembly language.
However if you want to combine assembly and BASIC you
will find these routines very useful.

I/O Calling Sequences

Input and Output (I/O) operations on a Model I machine are
straight forward, being either memory mapped or port
addressable.  There are no DMA (direct memory access)
commands and interrupt processing is not used for I/O
operations.

The selection of entry points presented here is not
exhaustive.  It covers the more general ones and will point
the reader in the right direction to find more specialized
entry points, if needed.

In memory mapped operations, storing or fetching a byte
from a memory location, causes the data to be transferred
between the CPU register and the target device.  Examples

of memory mapped devices are the video, the keyboard,
and the disk.  Programmed I/O (via ports) is a direct
transfer of data between a register and a device.  The only
device using port I/O is the cassette.

Keyboard Input

The keyboard is memory mapped into addresses 3800 -
3BFF. It is mapped as follows:

Bit <------------------- Keyboard Addresses ------------------->

3801 3802 3804 3808 3810 3820 3840 3880

0 @ H P X 0 8 ENTER SHIFT

1 A I Q Y 1 9 CLEAR

2 B J R Z 2 : BREAK

3 C K S 3 ; UP ARW

4 D L T 4 , DN ARW

5 E M U 5 - LT ARW

6 F N V 6 . RT ARW

7 G O W 7 / SP BAR

When a key is depressed, a bit in the corresponding position
in the appropriate byte, is set, also bits set by a previous key
are cleared.  You will notice that only eight bytes
(3801 - 3880) are shown in the table as having any
significance. This might lead one to believe that the bytes in
between could be used.  Unfortunately this is not the case as
the byte for any active row is repeated in all of the unused
bytes.  Thus all bytes are used.

CALL 002B Scan Keyboard

Performs an instantaneous scan of the keyboard. If no key
is depressed control is returned to the caller with the A-
register and status register set to zero.  If any key (except
the BREAK key) is active the ASCII value for that
character is returned in the A-register.  If the BREAK key is
active, a RST 28 with a system request code of 01 is
executed.  The RST instruction results in a JUMP to the



16

DOS Exit 400C.  On non-disk Systems the Exit returns, on
disk systems control is passed to SYS0 where the request
code will be inspected and ignored, because system request
codes must have bit 8 on.  After inspection of the code,
control is returned to the caller of 002B. Characters
detected at 002B are not displayed.  Uses DE, status, and A
register.

;
; SCAN KEYBOARD AND TEST FOR BREAK OR ASTERISK
;

PUSH DE ; SAVE DE
PUSH IY ; SAVE IY
CALL 2BH ; TEST FOR ANY KEY ACTIVE
DEC A ; KEY ACTIVE, WAS IT A BREAK
JR M,NO ; GO IF NO KEY HIT
JR Z,BRK ; ZERO IF BREAK KEY ACTIVE
INC A ; <A> BACK TO ORIGINAL VALUE
CP 2AH ; NO, TEST FOR * KEY ACTIVE
JR Z,AST ; ZERO IF *
.
.
.

CALL 0049 Wait For Keyboard Input

Returns as soon as any key on keyboard is pressed.  ASCII
value for character entered is returned in A- register.  Uses
A, status and DE registers.

;
; WAIT FOR NEXT CHAR FROM KEYBOARD AND TEST FOR ALPHA
;

PUSH DE ; SAVE DE
PUSH IY ; SAVE IY
CALL 49H ; WAIT TILL NEXT CHAR ENTERED
CP 41H ; TEST FOR LOWER THAN "A"
JR NC,ALPHA ; JMP IF HIGHER THAN NUMERIC
.
.

CALL 05D9 Wait For Next Line

Accepts keyboard input and stores each character in a
buffer supplied by caller.  Input continues until either a
carriage return or a BREAK is typed, or until the buffer is
full.  All edit control codes are recognized, e.g. TAB,
BACKSPACE, etc.  The calling sequence is: On exit the
registers contain:

;
; GET NEXT LINE FROM KEYBOARD. EXIT IF BREAK STRUCK.
; LINE CANNOT EXCEED 25 CHARACTERS
;
SIZE EQU 25 ; MAX LINE SIZE ALLOWED

LD HL,BUFF ; BUFFER ADDRESS
LD B,SIZE ; BUFFER SIZE
CALL 5D9H ; READ NEXT LINE FROM KEYBOARD
JR C,BREAK ; JMP IF BREAK TYPED
.
.

BUFF DEFS SIZE    ; LINE BUFFER
.
.

HL Buffer address
B Number of characters transmitted excluding last.
C Original buffer size
A Last character received if a carriage return or

BREAK is typed.
Carry Set if break key was terminator, reset otherwise.

If the buffer is full, the A register will contain the buffer
size.

Video Output

Video I/O is another example of memory mapped I/O.  It
uses addresses 3C00 thru 3FFF where 3C00 represents the
upper left hand corner of the video screen and 3FFF
represents the lower right hand corner of the screen.

Screen control codes such as TAB, CURSON ON/OFF,
BACKSPACE and such are processed by the video driver
routine.  The video device itself does not recognize any
control codes.  Codes recognized by the driver and their
respective actions are:

Code (hex.) Action

08 backspace and erase character.
0E turn on cursor.
0F turn off cursor.
17 select line size of 32 char/line.
18 backspace one character (left arrow)
19 skip forward one character (right arrow)
1A skip down one line (down arrow).
1B skip up one line (up arrow).
1C home cursor. select 64 char/line.
1D position cursor to Start of current line
1E erase from cursor to end of line
1F erase from Cursor to end of frame

Character and line size (32/64 characters per line) is
selected by addressing the video controller on port FF, and
sending it a function byte specifying character size. The
format of that byte is:

         7 6 5 4 3 2 1 0  = bit

         x x x x x x x x

                           used for cassette
          not used                   operations

                      character size select

                         1 = 32 char/line
                         0 = 64 char/line

CALL 0033 Video Display

Displays the character in the A-register on the video.
Control codes are permitted.  All registers are used.

;
; DISPLAY MESSAGE ON VIDEO
;

LD HL,LIST ; MESSAGE ADDRESS
LOOP LD A,(HL) ; GET NEXT CHARACTER

OR A ; TEST FOR END OF MESSAGE
JR Z,DONE ; JMP IF END OF MESSAGE (DONE)
PUSH HL ; NT END, PRESERVE HL
CALL 33H ; AND PRINT CHARACTER
POP HL ; RESTORE HL
INC HL ; BUMP TO NEXT CHARACTER
JR LOOP ; LOOP TILL ALL PRINTED

DONE .
.
.

LIST DEFM 'THIS IS A TEST'
DEFB 0DH ; CARRIAGE RETURN
DEFB 0 ; END OF MESSAGE INDICATOR



17

CALL 01C9 Clear Screen

Clears the screen, selects 64 characters and homes the
cursor. All registers are used.

;
; CLEAR SCREEN, HOME CURSOR, SELECT 32 CHAR/LINE
; SKIP 4 LINES
;

CALL 01C9H ; CLEAR SCREEN
LD A,17H ; SELECT 32 CHAR/LINE
CALL 0033H ; SEND CHAR SIZE TO VIDEO
LD B,4 ; NO. OF LINES TO SKIP
LD A,1AH ; CODE TO SKIP ONE LINE

 LOOP PUSH BC ; SAVE BC
CALL 33H ; SKIP I LINE
POP BC ; GET COUNT
DJNZ LOOP ; LOOP TILL FOUR LINES DONE

CALL 022C Blink Asterisk

Alternately displays and clears an asterisk in the upper right
hand corner.  Uses all registers.

;
; BLINK ASTERISK THREE TIMES
;

LD B,3 ; NO. OF TIMES TO BLINK
LOOP PUSH BC ; SAVE COUNT

CALL 022CH ; BLINK ASTERISK ONCE
POP BC ; GET COUNT
DJNZ LOOP ; COUNT 1 BLINK

DONE .
.

Printer Output

The printer is another example of a memory mapped
device.  Its address is 37E8H.  Storing an ASCII character
at that address sends it to the printer.  Loading from that
address returns the printer status.  The status is returned as a
zero status if the printer is available and a non-zero status if
the printer is busy.

CALL 003B Print Character

The character contained in the C-register is sent to the
printer.  A line count is maintained by the driver in the
DCB.  When a full page has been printed (66 lines), the line
count is reset and the status register returned to the caller is
set to zero.  Control codes recognized by the printer driver
are:

CODE          ACTION

00 Returns the printer Status in the upper two bits of
the A-register and sets the status as zero if not
busy, and non-zero if busy.

0B Unconditionally skips to the top of the next page.

0C Resets the line count (DCB 4) and compares its
previous value to the lines per page (DCB 3)
value. If the line count was zero, no action is
taken. If the line count was non-zero then a Skip
to the top form is performed.

0D Line terminator. Causes line count to be inc-
remented and tested for full page. Usually causes
the printer to begin printing.

;
; WRITE MESSAGE ON PRINTER. IF NOT READY WITHIN 1.5 SECONDS
; DISPLAY ERROR MESSAGE ON VIDEO
;

LD HL,LIST ; ADDR OF LINE TO PRINT
START LD B,5 ; PREPARE TO TEST FOR PRINTER

; READY
LOAD LD DE,10H ; LOAD DELAY COUNTERS
TST CALL 05D1H ; GET PRINTER STATUS

JR Z,RDY ; JP IF PRINTER READY
DEC DE ; NOT READY, DECREMENT

; COUNTERS AND
LD A,D ; TEST IF 1.5 SEC HAS ELAPSED

OR E ; FIRST DE MUST = 0
JR NZ,TST ; JMP IF DE NOT 0
DJNZ LOAD ; LOOP TILL 1.5 SEC PASSED
JP NTRDY ; GO DISPLAY 'PRINTER NOT

; READY
RDY POP HL ; RESTORE ADDR OF PRINT LINE

LD A,(HL) ; GET NEXT CHAR TO PRINT
OR A ; TEST FOR END OF LINE
JR Z,DONE ; JMP IF END OF LINE
LD C,A ; PUT CHAR IN PROPER REGISTER

CALL 58DH ; PRINT CHARACTER
INC HL ; BUMP TO NEXT CHAR
JR START ; LOOP TILL ALL CHARS PRINTED

NTRDY LD HL,NTRDM ; HL = ADDR OF NOT READY NSG

CALL VIDEO* ; PRINT MEG
DONE . ; LINE PRINTED ON PRINTER

.

.
LIST DEFM 'THIS IS A TST

DEFB ODH ; CR MAY BE REQUIRED TO START
; PRINTER

DEFB 0 ; END OF MSG FLAG

NTRDM DEFM 'PRINTER NOT READY'
DEFB 0 ; TERMINATE PRINTED MSG
.
.

CALL 05D1 Get Printer Status
Returns the status of the line printer in the status register as
zero if the printer is ready, and non-zero if not ready.

Other status bits are returned as shown:

     7 6 5 4 3 2 1 0 = bit

     x x x x 0 0 0 0

  NOT USED

  0 - PRINTER NOT SELECTED
  1 - PRINTER SELECTED

  0 - NOT READY
  1 - READY

  0 - PAPER
  1 - OUT OF PAPER

  0 - NOT BUSY
  1 - BUSY

The out of paper and busy bits are optional on some printers.

;
; MONITOR PRINTER STATUS ACCORDING TO STATUS BITS ABOVE
; AND PRINT APPROPRIATE ERROR MESSAGE
;

LD BC,10 ; TIMER COUNT FOR PRINTER
START CALL 05D1H ; GET PRINTER STATUS

JR Z,OK ; JUMP IF READY
BIT 7,A ; IS IT STILL PRINTING?
JR Z,TIME ; YES IF NZ. GO TIME IT
BIT 4,A ; NOT PRINTING. IS IT SELECTED
JR Z,NS ; ZERO IF NOT SELECTED

; WE HAVE A HARDWARE PROBLEM
BIT 5,A ; UNIT IS SELECTED AND NOT BUSY
JR Z,NR ; ZERO IF NOT READY



18

;
; UNIT IS SELECTED, READY, AND NOT BUSY. ASSUME OUT OF PAPER
;
OP LD HL,OPM ; DISPLAY OUT OF PAPER MSG

.

.
JP WAIT ; GO WAIT FOR OPERATOR REPLY

; AND RETRY OR ABORT
NR BIT 6,A ; UNIT IS NOT READY, TEST FOR OUT

JR NZ,OP ; OF PAPER ALSO. JMP IF OUT OF PAPER

LD HL,NRM ; DISPLAY NOT READY MSG
.
.
JP WAIT ; GO WAIT FOR OPERATOR REPLY

; AND RETRY OR ABORT
NB LD HL,NSM ; GET DISPLAY NOT SELECTED MSG

.

.
JP WAIT ; GO WAIT FOR OPERATOR REPLY

; AND RETRY OR ABORT
TIME POP BC ; GET TIME COUNTER

DEC BC ; COUNT 1 LOOP
PUSH BC ; SAVE NEW VALUE
LD A,B ; IF ITS GONE TO ZERO
OR C ; WE HAVE TIMED OUT
JR NZ,START ; LOOP TILL OP FINISHED OR TIME-OUT

LD HL,TOM ; DISPLAY TIMEOUT MSG
.
.
JP WAIT ; GET OPERATOR REPLY AND RETRY

; OR ABORT
.

Cassette I/O

Cassette I/O is not memory mapped.  Cassettes are
addressed via port FF after selecting the proper unit, and
I/O is done a bit at a time whereas all other devices do I/O
on a byte basis (except for the RS-232-C).

Because of the bit-by-bit transfer of data, timing is
extremely critical.  When any of the following calls are
used, the interrupt system should be disabled to guarantee
that no interruptions will occur and therefore disturb the
critical timing of the output.

CALL 0212 Turn On Motor

Selects unit specified in A-register and starts motor. Units
are numbered from one. All registers are used.

LD A,1 ; CODE TO SELECT CASSETTE 1
CALL 0212H ; SELECT UNIT 1, TURN ON MOTOR
.
.
.

CALL 0284 Write Leader

Writes a Level II leader on currently selected unit.  The
leader consists of 256 (decimal) binary zeros followed by a
hex A5. Uses the B and A registers.

LD A,1 ; CODE TO SELECT UNIT I
CALL 212H ; SELECT UNIT, TURN ON MOTOR
CALL 284H ; WRITE HEADER
.
.
.

CALL 0296 Read Leader

Reads the currently selected unit until an end of leader (A5)
is found.  An asterisk is displayed in the upper right hand
corner of the video display when the end is found.  Uses the
A-register.

LD A,1 ; CODE FOR UNIT 1
CALL 0212H ; SELECT UNIT 1, TURN ON MOTOR
CALL 0296H ; READ HEADER. RTN WHEN A5 ENCOUNTERED
.
.

CALL 0235 Read One Byte

Reads one byte from the currently selected unit. The byte
read is returned in the A-register. All other registers are
preserved.

LD A,1 ; UNIT TO SELECT
CALL 0212H ; SELECT UNIT TURN ON MOTOR
CALL 0296H ; SKIP OVER HEADER
CALL 0235H ; READ FOLLOWING BYTE
CP 41H ; TEST FOR OUR FILE NAME (A)
JR Z,YES ; JMP IF FILE A
.
.
.

CALL 0264 Write One Byte

Writes the byte in the A-register to the currently selected
unit.  Preserves all register.

LD A,1 ; UNIT NO. MASK.
CALL 0212H ; SELECT UNIT, START MOTOR
CALL 0284H ; WRITE HEADER (256 ZEROS AND A5)
LD A,41H ; WRITE FILE NAME (OURS IS A)
CALL 0264H ; WRITE A AFTER HEADER
.
.
.



19

Conversion Routines

These entry points are used for converting binary values
from one data type or mode to another, such as integer to
floating point, and for conversions between ASCII and
binary representation.  These conversion routines assume
the value to be converted is in WRA1 and that the mode
flag (40AF) reflects the current data type.  The result will
be left in WRA1 and the mode flag will be updated.

Data Type Conversions

CALL 0A7F Floating Point Integer

The contents of WRA1 are converted from single or double
precision to integer. No rounding is performed. All registers
are used.

;
;  CONVERT SINGLE PRECISION VALUE TO INTEGER AND MOVE THE RESULT
;  TO IVAL
;

LD HL,4121H ; ADDR OF LSB IN WRA1
LD DE,VALUE ; ADDR OF LSB OF SP NO.
LD BC,4 ; NO OF BYTES TO MOVE
LDIR ; MOVE VALUE TO WRAS
LD A,4 ; TYPE CODE FOR SP
LD (40AFH),A ; SET TYPE TO SP
CALL 0A7FH ; CONVERT SP VALVE TO INTEGER
LD A,(412lH) ; LSB OF INTEGER EQUIVALENT
LD (IVAL),A ; SAVE IN INTEGER LOCATION
LD A,(4122H) ; MSB OF INTEGER EQUIVALENT
LD (IVAL+1),A ; SAVE IN INTEGER LOCATION
.
.
.

VALUE DEFB 0EH ; LSB OF 502.778 (SP)
DEFB B6H ; NLSB
DEFB 00H ; MSB
DEFB 88H ; EXPONENT

IVAL DEFB 0 ; WILL HOLD INTEGER EQUIVALENT OF
DEFB 0 ; SP 502.778
.
.

CALL 0AB1 Integer To Single

The contents of WRA1 are converted from integer or
double precision to single precision. All registers are used.

;
; CONVERT INTEGER VALUE TO SINGLE PRECISION AND MOVE TO
; LOCAL AREA
;

LD A,59H
LD (4121H),A ; LSB OF INTEGER 26457 (10)
LD A,67H
LD (4122H),A ; MEN OF INTEGER 26457 (10)
LD A,2 ; TYPE CODE FOR INTEGER
LD (40AFH),A ; SET TYPE TO INTEGER
CALL 0ADBH ; CONVERT INTEGER TO SP
LD HL,VALUE ; ADDR. OF AREA FOR SP EQUIVALENT
CALL O9CBH ; MOVE SP VALUE FROM WRA1 TO VALUE
.
.
.

VALUE DEFS 4 ; WILL HOLD 26457 IN SP FORMAT
.
.

CALL 0ADB Integer To Double

Contents of WRA1 are converted from integer or single
precision to double precision. All registers are used.

;
;
;

LD A,59H
LD (4121H),A ; LSB OF 26457 (10)
LD A,67H
LD (4122H),A ; MSB OF 26457 (10)
LD A,2 ; TYPE CODE FOR INTEGER
LD (40AFH),A ; SET TYPE TO INTEGER
CALL 0ADBH ; CONVERT INTEGER TO DP
LD DE,VALUE ; NOW, MOVE DP VALUE
LD HL,411DH ; FROM WRA1 TO LOCAL AREA
LD BC,B ; NO. OF BYTES TO MOVE
LDIR ; MOVE VALUE
.
.
.

VALUE DEFS 8 ; HOLDS OP EQUIVALENT OF 26457
.
.
.

ASCII To Numeric Representation

The following entry points are used to convert between
binary and ASCII.  When converting from ASCII to binary
the HL register pair is assumed to contain the address of the
ASCII string.  The result will be left in WRA1 or the DE
register pair and the mode flag will be updated accordingly.

CALL 1E5A ASCII To Integer

Converts the ASCII string pointed to by HL to its integer
equivalent.  The result is left in the DE register pair.
Conversion will cease when the first non-numeric character
is found.

;
;
;

LD HL,AVAL ; HL = ADDR. OF ASCII NUMBER
CALL 1E5AH ; CONVERT IT TO BINARY
LD (BVAL),DE ; SAVE BINARY VALUE
.
.
.

AVAL DEFM '26457' ; ASCII VALUE 26457
DEFB 0 ; NON-NUMERIC STOP BYTE

BVAL DEFW 2 ; HOLDS BINARY VALUE 26457
.
.

CALL 0E6C ASCII To Binary

Converts the ASCII string pointed to by HL to binary.  If
the value is less than 2**16 and does not contain a decimal
point or an E or D descriptor (exponent), the string will be
converted to its integer equivalent.  If the string contains a
decimal point or an E, or D descriptor or if it exceeds 2**16
it will be converted to single or double precision.  The
binary value will be left in WRA1 and the mode flag will be
to the proper value.



20

;
;
;

LD HL,AVAL ; ASCII NUMBER
CALL 0E6CH ; CONVERT ASCII TO BINARY
.
.
.

AVAL DEFM '26457' ; ASCII VALUE TO BE CONVERTED
DEFB 0 ; NON-NUMERIC STOP
.
.

CALL 0E65 ASCII To Double

Converts the ASCII string pointed to by HL to its double
precision equivalent.  All registers are used.  The result is
left in WRA1.

;
;
;
   LD HL,AVAL ; ADDR OF ASCII VALUE TO CONVERT

CALL 0E65H ; CONVERT VALUE TO DP
LD DE,BVAL ; THEN MOVE VALUE FROM
LD HL,411DH ; WRA1 TO A LOCAL AREA
LD BC,8 ; NO. OF BYTES TO MOVE
LDIR ; MOVE DP VALUE TO LOCAL AREA
.
.
.

AVAL DEFM '26457' ; ASCII VALUE TO BE CONVERTED
DEFB 0 ; NONNUMERIC STOP BYTE

BVAL DEFS 8 ; LOCAL AREA THAT HOLDS BINARY
; EQUIVALENT

.

.

Binary To ASCII Representation

The next set of entry points are used to convert from binary
to ASCII.

CALL 0FAF HL To ASCII

Converts the value in the HL register pair (assumed to be an
integer) to ASCII and displays it at the current cursor
position on the video.  All registers are used.

;
;
;

LD HL,64B8H ; HL = 25784 (10)
CALL 0FAFH ; CONVERT TO ASCII AND DISPLAY
.
.

CALL 132F Integer To ASCII

Converts the integer in WRA1 to ASCII and stores the
ASCII string in the buffer pointed to by the HL register
pair.  On entry, both the B and C registers should contain a
5 to avoid any commas or decimal points in the ASCII
string.  All registers are preserved.

;
;
;

LD HL,500
LD (4121H),HL ; 500 (10) TO WRA1
LD BC,505H ; SUPPRESS COMMAS OR DEC. PTS.
LD HL,BUFF ; BUFFER ADDR FOR ASCII STRING
CALL 132FH ; CONVERT VALUE IN WRA1 TO ASCII

; AND STORE IN BUFF.
.
.
.

BUFF DEFS 5 ; BUFFER FOR ASCII VALUE
.
.

CALL 0FBE Floating to ASCII

Converts the single or double precision number in WRA1
to its ASCII equivalent.  The ASCII value is stored at the
buffer pointed to by the HL register pair.  As the value is
converted from binary to ASCII, it is formatted as it
would be if a PRINT USING statement had been
invoked.  The format modes that can be specified are
selected by loading the following values into the A, B ,and
C registers.

REGISTER   A = 0 ... Do not edit. Strictly binary to ASCII.
REGISTER   A = X ... Where x is interpreted as:

7 6 5 4 3 2 1 0  = BIT
x x x x x x x x

                         EXPONENTIAL NOTATION

                         RESERVED

                         SIGN FOLLOWS VALUE

                         INCLUDE SIGN

                         PRINT LEADING $ SIGN

                         INCLUDE LEADING ASTERISKS

                         PRINT COMMAS EVERY 3RD DIGIT

                         0 - DO NOT PERFORM EDIT FUNCTIONS
                         1 - EDIT VALUE ACCORDING TO OPTIONS

REGISTER   B = The number of digits to the left of the
               decimal point.
REGISTER   C = The number of digits after the decimal point

;
;
;

LD HL,AVAL1 ; ASCII VALUE TO CONVERT
CALL 0E6CH ; CONVERT ASCII TO BINARY
LD HL,AVAL2 ; BUFFER ADDR. FOR CONVERTED VALUE
LD A,0 ; SIGNAL NO EDITING
CALL 0FBEH ; CONVERT SP VALUE BACK TO ASCII
.
.
.

AVAL1 DEFM '1103.25' ; ORIGINAL ASCII VALUE
DEFB 0 ; NON-NUMERIC STOP BYTE

AVAL2 DEFS 7 ; WILL HOLD RECONVERTED VALUE
.
.



21

Arithmetic Routines

These subroutines perform arithmetic operations between
two operands of the same type.  They assume that the
operands are loaded into the correct hardware or Working
Register Area, and that the data type or mode is set to the
correct value.  Some of these routines may require the
Divide Support Routine (See Chapter 1 for details.)

Integer Routines

The following routines perform arithmetic operations
between integer values in the DE and HL register pairs.
The original contents of DE is always preserved and the
result of the operations is always left in the HL register pair.

CALL 0BD2 Integer Add

Adds the integer value in DE to the integer in HL.  The sum
is left in HL and the original contents of DE are preserved.
If overflow occurs (sum exceeds 2**15), both values are
converted to single precision and then added.  The result
would be left in WRA1 and the mode flag would be
updated.

LD A,2 ; TYPE CODE FOR INTEGER
LD (40AFH),A ; SET TYPE TO INTEGER
LD HL,(VAL1) ; LOAD FIRST VALUE
LD DE,(VAL2) ; LOAD SECOND VALUE
CALL 0BD2H ; ADD SO THAT HL = HL + DE
LD A,(40AFH) ; TEST FOR OVERFLOW
CP 2 ; IF TYPE IS NOT INTEGER
JR NZ,... ; NZ IF SUM IS SINGLE PRECISION
. ; ELSE SUM IS INTEGER
.
.

VAL1 DEFW 25
VAL2 DEFW 20

.

.

CALL 0BC7 Integer Subtraction

Subtracts the value in DE from the value in HL. The
difference is left in the HL register pair. DE is preserved.
In the event of underflow, both values are converted to
single precision and the subtraction is repeated. The result
is left in WRA1 and the mode flag is updated accordingly.

LD A,2 ; TYPE CODE FOR INTEGER
LD (40AFE),A ; SET TYPE TO INTEGER
LD HL,(VAL1) ; VALUE 1
LD DE,(VAL2) ; VALUE 2
CALL 0BC7H ; SUBTRACT DE FROM HL
LD A,(40AFH) ; GET MODE FLAG
CP 2 ; TEST FOR UNDERFLOW
JR NZ,... ; NZ IF UNDERFLOW
.
.
.

VAL1 DEFW   25
VAL2 DEFW   20

.

.

CALL 0BF2 Integer Multiplication

Multiplies HL by DE.  The product is left in HL and DE is
preserved.  If overflow occurs, both values are converted to
single precision and the operation is restarted.  The product
would be left in WRA1.

LD A,2 ; TYPE CODE FOR INTEGER
LD (40AFH),A ; SET TYPE TO INTEGER
LD HL,(VAL1) ; LOAD FIRST VALUE
LD DE,(VAL2) ; LOAD SECOND VALUE
CALL 0BF2H ; HL = HL * DE
LD A,(40AFH) ; GET MODE FLAG
CP 2 ; TEST FOR OVERFLOW
JR NZ,... ; NO IF VALUE HAS OVERFLOWED
.
.
.

VAL1 DEFW 25
VAL2 DEFW 20

.

.

CALL 2490 Integer Division

Divides DE by HL. Both values are converted to single
precision before the division is started.  The quotient is left
in WRA1; the mode flag is updated.  The orginal contents
of the DE and HL register sets are lost.

LD DE,(VAL1) ; LOAD VALUE 1
LD HL,(VAL2) ; LOAD VALUE 2
CALL 2490H ; DIVIDE DE BY HL. QUOTIENT TO WRAl
.
.
.

VAL1 DEFW 50
VAL2 DEFW 2

CALL 0A39 Integer Comparison

Algebraically compares two integer values in DE and HL.
The contents of DE and HL are left intact. The result of the
comparison is left in the A register and status register as:

OPERATION A REGISTER
--------- ----------
DE > HL   A = -1
DE < HL   A = +1
DE = HL   A = 0

;
;
;

LD DE,(VAL1) ; DE AND HL ARE VALUES
LD HL,(VAL2) ; TO BE COMPARED
CALL 0A39H ; COMPARE DE TO HL
JR Z,... ; Z IF DE = HL
JP P,... ; POSITIVE IF DE < HL
.
.

Single Precision Routines

The next set of entry points are used for single precision
operations. These routines expect one argument in the
BC/DE registers and the other argument in WRA1.



22

CALL 0716 Single Precision Add

Add the single precision value in (BC/DE) to the single
precision value in WRA1. The sum is left in WRA1

LD HL,VAL1 ; ADDR. OF ONE SP VALUE
CALL 9B1H ; MOVE IT TO WRA1
LD HL,VAL2 ; ADDR. OF 2ND SP VALUE
CALL 9C2H ; LOAD IT INTO BC/DE REGISTER
CALL 716H ; ADD VALUE 1 TO VALUE 2
. ; SUM IN WRA1
.
.

VAL1 DEFS 4 ; HOLDS A SP VALUE
VAL2 DEFS 4 ; HOLDS A SP VALUE

.

.

CALL 0713 Single Precision Subtract

Subtracts the single precision value in (BC/DE) from the
single precision value in WRA1. The difference is left in
WRA1.

LD HL,VAL1 ; ADDR OF ONE SP. VALUE
CALL 9B1H ; MOVE IT TO WRA1
LD HL,VAL2 ; ADDR OF 2ND SP VALUE
CALL 9C2H ; LOAD IT INTO BC/DE
CALL 713H ; SUBTRACT DE FROM WRA1
. ; DIFFERENCE LEFT IN WRA1
.
.

VAL1 DEFS 4 ; HOLDS A SP VALUE
VAL2 DEFS 4 ; HOLDS A SP VALUE

.

.

CALL 0847 Single Precision Multiply

Multiplies the current value in WRA1 by the value in
(BC/DE). the product is left in WRA1.

LD HL,VAL1 ; ADDR OF ONE SP VALUE
CALL 9B1H ; MOVE IT TO WRA1
LD HL,VAL2 ; ADDR OF 2ND SP VALUE
CALL 9C2H ; LOAD 2ND VALUE INTO BC/DE
CALL 547H ; MULTIPLY
. ; PRODUCT LEFT IN WRA1
.
.

VAL1 DEFS 4 ; HOLDS A SP VALUE
VAL2 DEFS 4 ; HOLDS A SP VALUE

.

.

CALL 2490 Single Precision Divide

Divides the single precision value in (BC/DE) by the single
precision value in WRA1.  The quotient is left in WRA1.

LD HL,VAL1 ; ADDR OF DIVISOR
CALL 9B1H ; MOVE IT TO WRA1
LD HL,VAL2 ; ADDR. OF DIVIDEND
CALL 9C2H ; LOAD BC/DE WITH DIVIDEND
CALL 2490H ; DIVIDE BC/DE BY WRA1
. ; QUOTIENT IN WRA1
.
.

VAL1 DEFS 4 ; HOLDS DIVISOR
VAL2  DEFS 4    HOLDS DIVIDEND

.

.

CALL 0A0C Single Precision
Comparison

Algebraically compares the single precision value in
(BC/DE) to the single precision value WRA1.  The result of
the comparison is returned in the A and status as:

    OPERATION A REGISTER

  (BC/DE) > WRA1   A = -1
  (BC/DE) < WRA1   A = +1
  (BC/DE) = WRA1   A =  0

;
;
;

LD HL,VAL1 ; ADDR OF ONE VALUE TO BE COMPARED
CALL 9B1H ; MOVE IT TO WRA1
LD HL,VAL2 ; ADDR OF 2ND VALUE TO COMPARE
CALL 9C2H ; LOAD 2ND VALUE INTO BC/DE
CALL 0A0CH ; COMPARE BC/DE TO WRA1
JR Z,... ; ZERO IF (BC/DE) = WRA1
JP P,... ; POSITIVE IF (BC/DE) < WRA1
.
.
.

VAL1 DEFS 4 ; HOLDS A SP VALUE
VAL2 DEFS 4 ; HOLDS A SP VALUE

.

.

Double Precision Routines

The next set of routines perform operations between two
double precision operands.  One operand is assumed to be
in WRA1 while the other is assumed to be in WRA2
(4127-412E).  The result is always left in WRA1.

CALL 0C77 Double Precision Add

Adds the double precision value in WRA2 to the value in
WRA1. Sum is left in WRA1.

LD A,8 ; TYPE CODE FOR DP
LD (40AFH),A ; SET TYPE TO DP
LD DE,VAL1 ; ADDR OF 1ST DP VALUE
LD HL,411DH ; ADDR OF WRA1
CALL 9D3H ; MOVE 1ST DP VALUE TO WRA1
LD DE,VAL2 ; ADDR OF 2ND DP VALUE
LD HL,4127H ; ADDR OF WRA2
CALL 9D3H ; MOVE 2ND VALUE TO WRA2
CALL 0C77H ; ADD WRA2 TO WRA1. SUM IN WRA1
.
.
.

VAL1 DEFS 8 ; HOLDS A DP VALUE
VAL2 DEFS 8 ; HOLDS A DP VALUE

.

.



23

CALL 0C70 Double Precision Subtraction

Subtracts the double precision value in WRA2 from the
value in WRA1. The difference is left in WRA1.

LD A,8 ; TYPE CODE FOR DP
LD (40AFH),A ; SET TYPE TO DP
LD DE,VAL1 ; ADDR OF 1ST DP VALUE
LD HL,411DH ; ADDR OF WRA1
CALL 9D3H ; MOVE 1ST DP VALUE TO WRA1
LD DE,VAL2 ; ADDR OF 2ND DP VALUE
LD HL,4127H ; ADDR OF WRA2
CALL 9D3H ; MOVE 2ND VALUE TO WRA2
CALL 0C70H ; SUBTRACT WRA2 FROM WRA1
. ; DIFFERENCE IN WRA1
.
.

VAL1 DEFS 8 ; HOLDS A DP VALUE
VAL2 DEFS 8 ; HOLDS A DP VALUE

.

.

CALL 0DA1 Double Precision Multiply

Multiplies the double precision value in WRA1 by the
value in WRA2. The product is left in WRA1.

LD A,8 ; TYPE CODE FOR DP
LD (40AFH),A ; SET TYPE TO DP
LD DE,VAL1 ; ADDR OF 1ST DP VALUE
LD HL,411DH ; ADDR OF WRA1
CALL 9D3H ; MOVE 1ST DP VALUE TO WRA1
LD DE,VAL2 ; ADDR OF 2ND DP VALUE
LD HL,4127H ; ADDR OF WRA2
CALL 9D3H ; MOVE 2ND VALUE TO WRA2
CALL 0DA1H ; MULTIPLY WRA1 BY WRA2
. ; PRODUCT IN WRA1
.
.

VAL1 DEFS 8 ; HOLDS A OF VALUE
VAL2 DEFS 8 ; HOLDS A OF VALUE

.

.

CALL 0DE5 Double Precision Divide

Divides the double precision value in WRA1 by the value
in WRA2. The quotient is left in WRA1.

LD A,8 ; TYPE CODE FOR DP
LD (40AFH),A ; SET TYPE TO DP
LD DE,VAL1 ; ADDR OF 1ST DP VALUE
LD HL,411DH ; ADDR OF WRA1
CALL 9D3H ; MOVE 1ST DP VALUE TO WRA1
LD DE,VAL2 ; ADDR OF 2ND DP VALUE
LD HL,4127H ; ADDR OF WRA2
CALL 9D3H ; MOVE 2ND VALUE TO WRA2
CALL 0DE5H ; DIVIDE WRA1 BY WRA2
. ; QUOTIENT LEFT IN WRA1
.
.

VAL1 DEFS       8  HOLDS A OF VALUE
VAL2 DEFS       8  HOLDS A OF VALUE

.

.

CALL 0A78 Double Precision Compare

Compares the double precision value in WRA1 to the value
in WRA2.  Both register areas are left intact.  The result of
the comparison is left in the A and status registers as:

               OPERATION      A REGISTER
       ————————————————————————————

              WRA1 > WRA2       A = -1
              WRA1 < WRA2       A = +1
              WRA1 = WRA2       A =  0
;
;
;

LD A,8 ; TYPE CODE FOR DP
LD (40AFH),A ; SET TYPE FLAG TO DP
LD DE,VAL1 ; ADDR OF 1ST DP VALUE
LD HL,411DH ; ADDR OF WRA1
CALL 9D3H ; MOVE 1ST VALUE TO WRA1
LD DE,VAL2 ; ADDR OF 2ND DP VALUE
LD HL,4127H ; ADDR OF WRA2
CALL 9D3H ; MOVE 2ND VALUE TO WRA2
CALL 0A78H ; COMPARE WRA1 TO WRA2
JR Z,... ; ZERO IF THEY ARE EQUAL
JP P,... ; POSITIVE IF WRA1 < WRA2
.
.

Math Routines

All of the following subroutines assume that location 40AF
contains a code indicating the data type or mode of the
variable e.g., integer, single precision, or double precision,
and that the variable itself is in Working Register Area 1
(WRA1).  Also, the floating point Division Support Routine
must be loaded at 4080.

CALL 0977 Absolute Value
ABS (N)

Converts the value in Working Register Area 1 (WRA1) to
its positive equivalent.  The result is left in WRA1.  If a
negative integer greater than 2**15 is encountered, it is
converted to a single precision value.  The data type or
mode flag (40AF) will be updated to reflect any change in
mode.

LD A,4 ; TYPE CODE FOR SP
LD (40AFH),A ; SET TYPE TO SP
LD HL,VAL1 ; ADDR OF SP VALUE TO ABS
CALL 09B1H ; MOVE SP VALUE TO WRA1
CALL 0977H ; FIND ABS VALUE
.
.
.

VAL1 DEFB 58H ; SP 81.6022(10)
DEFB 34H
DEFB 23H
DEFB 87H
.
.

CALL 0B37 Return Integer
INT (N)

Returns the integer portion of a floating point number.  If
the value is positive, the integer portion is returned.  If the
value is negative with a fractional part, it is rounded up
before truncation.  The integer portion is left in WRA1.
The mode flag is updated.



24

LD A,4 ; TYPE CODE FOR SP
LD (40AFH),A ; SET TYPE TO SINGLE PREC.
LD HL,VAL1 ; ADDR OF SP VALUE
CALL 09B1H ; MOVE SP VALUE TO WRA1
CALL 0B37H ; ISOLATE INTEGER PART OF SP VALUE
LD DE,4121H ; ADDR OF WRA1 (INTEGER PART OF SP

VALUE
LD HL,VAL2 ; LOCAL ADDR FOR INTEGERIZED VALUE

     CALL 09D3H ; MOVE INTEGERIZED SP VALUE TO LOCAL
AREA

.

.

.
VAL1 DEFB 0E0H ; SP -41.3418

DEFB 05DH
DEFB 0A5H
DEFB 086H

VAL2 DEFS 4 ; HOLDS INTEGER PORTION OF
; -41.3418

.

.

.

CALL 15BD Arctangent
ATN (N)

Returns the angle in radians, for the floating point tangent
value in WRA1.  The angle will be left as a single precision
value in WRA1.

LD A,4 ; TYPE CODE FOR SP
LD (40AFH),A ; SET TYPE TO SP
LD HL,TAN ; ADDR OF VALUE FOR TANGENT
CALL 09B1H ; MOVE TAN TO WRA1
CALL 15BDH ; FIND ANGLE IN RADS
LD HL,ANGL ; ADDR OF LOCAL STORAGE FOR ANGLE
LD DE,4121H ; ADDR OF WRA1
CALL 09D3H ; MOVE ANGLE FROM WRA1 TO LOCAL AREA
.
.
.

TAN DEFB 9AH ; TANGENT OF 30 DEG.
DEFB 0C4H
DEFB 13H
DEFB 80H ; EXPONENT

ANGL DEFS 4 ; WILL HOLD  30 DEG. IN RADS (.5235)

CALL 1541 Cosine
COS (N)

Computes the cosine for an angle given in radians.  The
angle must be a floating point value; the cosine will be
returned in WRA1 as a floating point value.

LD A,4 ; TYPE CODE FOR SP
LD (40AFH),A ; SET TYPE TO SP
LD HL,ANGL ; ADDR OF ANGLE VALUE
CALL 09B1H ; MOVE ANGLE TO WRA1
CALL 1541H ; COMPUTE COSINE
LD HL,CANGL ; LOCAL ADDR FOR COSINE
LD DE,4121H ; ADDR OF WRA1
CALL 09D3H ; MOVE COSINE FROM WRA1 TO LOCAL AREA

.

.

.
ANGL DEFB 18H ; 30 DEG. IN RADS. (.5235)

DEFB 04H
DEFB 06H
DEFB 80H ; EXPONENT

CANGL DEFS 4 ; WILL HOLD COSINE OF 30 DEG.
.
.

CALL 1439 Raise Natural Base
EXP (N)

Raises E (natural base) to the value in WRA1 which must
be a single precision value.  The result will be returned in
WRA1 as a single precision number.

LD A,4 ; TYPE CODE FOR SP
LD (40AFH),A ; SET TYPE TO SP
LD HL,EXP ; ADDR OF EXPONENT
CALL 09B1H ; MOVE EXPONENT TO WRA1
CALL 1439H ; FIND E ** 1.5708
LD DE,4121H ; ADDR OF WRA1
LD HL,POW ; ADDR OF LOCAL STORAGE
CALL 09D3H ; MOVE POWER TO LOCAL AREA
.
.
.

EXP DEFB 0DBH ; SP  1.5708(10)
DEFB 00FH
DEFB 049H
DEFB 081H

POW DEFS 4 ; HOLDS E**1.5708
.
.
.

CALL 13F2 Raise X to the Y Power
X**Y

Raises the single precision value which has been saved on
the STACK to the power specified in WRA1.  The result
will be returned in WRA1.

;
; COMPUTE 16**2
;

LD BC,RETADD ; RTN ADDR FOLLOWING
PUSH BC ; RAISING X TO Y
LD A,4 ; TYPE CODE FOR SP
LD (40AFH),A ; SET TYPE TO SP FOR X
LD HL,X ; ADDR OF VAL TO BE RAISED
CALL 09B1H ; MOVE VAL TO WRA1
CALL 09A4H ; WRA1 TO STACK
LD HL,Y ; ADDR OF POWER
CALL 0931H ; MOVE POWER TO WRA1
JP 13F2H ; WRA1 = COMPUTE X**Y

RA . ; RTN TO RA WHEN DONE
.
.

X DEFW 0 ; SP FOR 16 (10)
DEFW 85H

Y DEFW 0 ; SP FOR 2 (10)
DEFW 82H
.
.



25

CALL 0809 Natural Log
LOG (N)

Computes the natural log (base E) of the single precision
value in WRA1.  The result is returned as a single precision
value in WRA1.

LD A,4 ; TYPE CODE FOR SP
LD (40AFH),A ; SET TYPE TO SP
LD HL,POW ; ADDR OF POWER
CALL 09B1H ; MOVE POWER TO WRA1
CALL 0809H ; FIND NAT.LOG. OF POWER
LD DE,4121H ; ADDR OF WRA1
LD HL,NLOG ; ADDR OF LOCAL STORAGE AREA
CALL 09D3H ; MOVE LOG FROM WRA1 TO LOCAL AREA
.
.
.

POW DEFB 00 ; FLOATING POINT 3 (LSB)
DEFB 00
DEFB 04H
DEFB 82HH ; EXPONENT FOR 3.0

NLOG DEFS 4 ; WILL HOLD NAT. LOG OF 3
.
.
.

CALL 0B26 Floating To Integer
FIX (N)

Unconditionally truncates the fractional part of a floating
point number in WRA1.  The result is stored in WRA1 and
the type flag is set to integer.

LD A,4 ; TYPE CODE FOR SP
LD (40AFH),A ; SET TYPE TO SP
LD HL,FLPT ; ADDR OF FLOATING POINT VALUE
CALL 09B1H ; MOVE FLT.PT. VALUE TO WRA1
CALL 0B26H ; TRUNCATE AND CONVERT TO INTEGER
LD HL,(4121H) ; LOAD INTEGER PORTION FROM WRA1
LD (INTG),HL ; AND STORE IN LOCAL AREA
.
.
.

FLPT DEFB 0BAH ; SP 39.7107(10)
DEFB 0D7H
DEFB 01EH
DEFB 086H

INTG DEFS 2 ; HOLDS INTEGER PORTION OF
; 39.7107

.

.

.

CALL 01D3 Reseed Random Seed
RANDOM

Reseeds the random number seed (location 40AB) with the
current contents of the refresh register.

CALL 01D3H ; RESEED RANDOM NUMBER SEED
.
.
.

CALL 14C9 Random Number
RND (N)

Generates a random number between 0 and 1, or 1 and n
depending on the parameter passed in WRA1.  The random
value is returned in WRA1 as an integer with the mode flag
set.  The parameter passed will determine the range of the
random number returned.  A parameter of 0 will return an
interger between 0 and 1.  A parameter greater than 0 will
have any fraction portion truncated and will cause a value
between 1 and the integer portion of the parameter to be
returned.

LD A,2 ; TYPE CODE FOR INTEGER
LD (40AFH),A ; SET TYPE TO INTEGER
LD A,50
LD (4l21H),A ; PUT AN INTEGER 50 INTO WRA1
CALL 14C9H ; GET A RANDOM NO. BETWEEN 1 AND 50
LD HL,(4121H) ; LOAD RANDOM NO. INTO HL
LD (RVAL),HL ; AND MOVE IT TO LOCAL AREA
.
.
.

RVAL DEFW 0 ; HOLDS RANDOM NUMBER (INTEGER)
.
.
.

CALL 1547 Sine
SIN (N)

Returns the sine as a single precision value in WRA1. The
sine must be given in radians in WRA1.

LD A,4 ; TYPE CODE FOR INTEGER
LD (40AFH),A ; SET TYPE TO SP
LD HL,ANGL ; ADDR. OF ANGLE IN RADIANS
CALL 09B1H ; MOVE ANGLE TO WRA1
CALL 1547H ; COMPUTE SINE OF ANGLE
LD DE,4121H ; ADDR OF SINE IN WRA1
LD HL,SANGL ; ADDR OF LOCAL AREA FOR SIN
CALL 09D3H ; MOVE SINE TO LOCAL AREA
.
.
.

ANGL DEFB 18H ; 30 DEGS. IN RADS. (.5235)
DEFB 04H
DEFB 06H
DEFB 80H ; EXPONENT

SANGL DEFS 4 ; WILL HOLD SINE OF 30 DEG.
.
.
.

CALL 13E7 Square Root
SQR (N)

Computes the square root of any value in WRA1.  The root
is left in WRA1 as a single precision value.

LD A,4 ; TYPE CODE FOR SP
LD (40AFH),A ; SET TYPE TO SP
LD HL,VAL1 ; VALUE TO ROOT OF
CALL 09B1H ; MUST BE IN WRA1
CALL 13E7H ; TAKE ROOT OF VALUE
LD DE,4121H ; ADDR OF ROOT IN WRA1
LD HL,ROOT ; ADDR OF LOCAL AREA
CALL 09D3H ; MOVE ROOT TO LOCAL AREA
.
.
.

VAL1 DEFB 00H ; SP 4
DEFB 00H
DEFB 00H
DEFB 83H ; EXPONENT OF FLOATING POINT 4

ROOT DEFS 4 ; HOLDS ROOT OF 4
.
.
.



26

CALL 15A8 Tangent
TAN (N)

Computes the tangent of an angle in radians.  The angle
must be specified as a single precision value in WRA1.
The tangent will be left in WRA1.

LD A,4 ; TYPE CODE FOR SP
LD (40AFH),A ; SET TYPE TO SP
LD HL,ANGL ; ADDR OF ANGLE IN RADIANS
CALL 0981H ; MOVE ANGLE TO WRA1
CALL 15A8H ; FIND TAN OF ANGLE
LD DE,4121H ; ADDR OF WRA1
LD HL,TANGL ; ADDR OF LOCAL STORAGE FOR TAN
CALL 09D3H ; WOVE TAN FROM WRA1 TO LOCAL AREA
.
.
.

ANGL DEFB 18H ; VALUE FOR 30 DEG IN RADS
DEFB 04H ; (.5235)
DEFB 06H
DEFB 80H ; EXPONENT

TANGL DEFS 4 ;   WILL HOLD TANGENT OF 30 DEG.
.
.
.

Function Derivation



27

SYSTEM FUNCTIONS

System Functions are ROM entry points that can be entered
at This means that on a disk based system, for example, an
assembly language program which CALLS these entry
points could be executed immediately after IPL before
executing the BASIC utility program first.

These entry points are different from the BASIC Functions
because they do not require the Communications Region
(CR) to be initialized in order to operate correctly.  A Level
II system without disks always has an initialized CR
because of its IPL processing.

Some of the routines mentioned here do use the
Communications Region, but none of them require any
particular locations to be initialized.  The System Error
routine however, which may be called in the event of an
error detected by these routines, will assume some words
contain meaningful data, and will return control to the
BASIC Interpreter Input Phase.

RST 08 Compare Symbol

Compares the symbol in the input string pointed to by HL
register to the value in the location following the RST 08
call.  If there is a match, control is returned to address of the
RST 08 instruction 2 with the next symbol in the A-register
and HL incremented by one.  If the two characters do not
match, a syntax error message is given and control returns
to the Input Phase.

;
; TEST THE STRING POINTED TO BY HL TO SEE IF IT
; CONTAINS THE STRING 'A=B=C'.
;

RST 08 ; TEST FOR A
DEFB 41H ; HEX VALUE FOR A
RST 08 ; FOUND A, NOW TEST FOR =
DEFB 3DH ; HEX VALUE FOR =
RET 08 ; FOUND =, NOW TEST FOR B
DEFB 42H ; HEX VALUE FOR B
RST 08 ; FOUND B, TEST FOR =
DEFB 3DH ; HEX VALUE FOR =
RST 08 ; FOUND =, TEST FOR C
DEFB 43H ; HEX VALUE FOR C
. ;FOUND STRING A=B-C
.
.

RST 10 Examine Next Symbol

Loads the next character from the string pointed to by the
HL register set into the A-register and clears the CARRY
flag if it is alphabetic, or sets it if is alphanumeric.  Blanks
and control codes 09 and 0B are ignored causing the
following character to be loaded and tested.  The HL
register will be incremented before loading any character
therefore on the first call the HL register should contain the
string address minus one.  The string must be terminated by
a byte of zeros.

;
; THE CURRENT STRING POINTED TO BY HL IS ASSUMED
; TO BE PART OF AN ASSIGNMENT STATEMENT CONTAINING
; AN OPTIONAL SIGN FOLLOWED BY A CONSTANT OR A
; VARIABLE NAME. MAKE THE NECESSARY TESTS TO DETERMINE
; IF A CONSTANT OR A VARIABLE IS USED.
;

RST 08 ; TEST FOR
DEFB 3DH ; HEX VALUE FOR =

NEXT RST 10H ; GET SYMBOL FOLLOWING =
JR NC,VAR ; NC IF VARIABLE NAME
CALL 1E5AH ; GET VALUE OF CONSTANT
JR SKIP ; JOIN COMMON CODE

VAR CP 2BH ; NOT NUMERIC, TEST FOR +,-,
; OR ALPHA

JR Z,NEXT ; SKIP + SIGNS
CP 20H ; NOT A +, TEST FOR A -
JR Z,NEXT ; SKIP - SIGNS
CALL 260DH ; ASSUME IT'S A GOOD ALPHA AND

; SEARCH FOR A VARIABLE NAME
; (SEE SECTION 2.6 FOR A
; DESCRIPTION OF 260D)

SKIP .
.
.

RST 18 Compare DE:HL

Numerically compares DE and HL.  Will not work for
signed integers (except positive ones). Uses the A-register
only. The result of the comparison is returned in the status
register as:

CARRY SET - HL < DE
NO CARRY - HL > DE
NZ - UNEQUAL
Z - EQUAL

;
; THIS EXAMPLE TESTS THE MAGNITUDE OF THE VALUE
; FOLLOWING THE - IN THE STRING POINTED TO BY HL
; TO MAKE SURE IT FALLS BETWEEN 100 AND 500
;

RST 08 ; TEST FOR =
DB 3DH ; HEX VALUE FOR =
RST 10H ; FOUND =, TEST NEXT CHAR
JR NC,ERR ; NC IF NOT NUMERIC
CALL 1E5AH ; GET BINARY VALUE
LD HL,500 ; UPPER LIMIT VALUE
RST 18H ; COMPARE VALUE TO UPPER LIMIT
JR C,ERR ; CARRY IF VALUE > 500
LD HL,100 ; LOWER LIMIT VALUE
RST 18H ; COMPARE VALUE TO LOWER LIMIT
JR NC,ERR ; NO CARRY IF VALUE < 100
.
.
.

RST 20 Test Data Mode

Returns a combination of STATUS flags and unique
numeric values in the A-register according to the data mode
flag (40AF).  This CALL is usually made to determine the
type of the current value in WRA1.  It should be used with
caution, however since the mode flag and WRA1 can get
out of phase particularly if some of the CALLS described
here are used to load WRA1.

         TYPE STATUS A-REGISTER

02  (INTEGER) NZ/C/M/E     -1
03  (STRING) Z/C/P/E      0
04  (SINGLE PREC.) NZ/C/P/O      1
08  (DOUBLE PREC.) NZ/NC/P/E      5



28

;
; TEST DATA TYPE AFTER INTEGER ADDITION TO
; DETERMINE IF OVERFLOW OCCURRED (RESULT WOULD
; BE CONVERTED TO SINGLE PRECISION
;

LD A,2 ; TYPE CODE FOR INTEGER
LD (40AFH),02 ; SET TYPE TO INTEGER
LD BC,(VAL1) ; FIRST QUANTITY
LD HL,(VAL2) ; SECOND QUANTITY
CALL 0B2DH ; DO INTEGER ADDITION
RST 20H ; TEST FOR OVERFLOW
JP M,OK ; RESULT IS INTEGER
. ; RESULT IS  NOT INTEGER
. ; TEST FOR OTHER TYPES

OK LD (SUM),HL ; SAVE INTEGER RESULT
.
.
.

VAL1 DEFW 125 ; 16 BIT INTEGER VALUE
VAL2 DEFW 4235 ; 16 BIT INTEGER VALUE
SUM DEFW 0 ; HOLDS 16 BIT VALUE

RST 28 DOS Function CALL

Passes request code in A-register to DOS for processing.
Returns for non-disk system.  For disk systems, the A-
register must contain a legitimate DOS function code.  If
the code is positive, the CALL is ignored and control
returns to the caller.  Note that the DOS routine discards the
return address stored on the stack by the RST instruction.
After processing control will be returned to the previous
address on the stack.  The calling sequence is:

;
; LOAD AND EXECUTE DEBUG
;

LD A,87H ; DOS CODE FOR LOADING DEBUG
CALL DOS
. ; RETURN HERE
.

DOS RST 28H ; MAKE DOS CALL (WILL RET TO CALLER)
.
.

RST 30 Load DEBUG

This CALL loads the DEBUG program and transfers
control to it. When DEBUG processing is complete, control
is returned to the original caller. For non-disk systems
control is returned immediately.

;
; IF ILLOGICAL CONDITION ARISES LOAD AND EXECUTE DEBUG.

. ; TEST FOR LEGITIMATE CONDITIONS

.

.
JR Z,OK ; JMP IF CONDITIONS ARE CORRECT
RST 30H ; ELSE LOAD AND EXECUTE DEBUG

OK . ; CONTINUE
.
.

RST 38 Interrupt Entry Point

This is the system entry point for all interrupts. It contains a
jump to section of code in the Communications Region
designed to field interrupts.  That section of code consists
of a DI (disables further interrupts) followed by a RET
(returns to the point of interrupt) for non-disk systems, or a

jump to an interrupt processor in SYS0 if it is a DOS
system.  For DOS systems the interrupt handler consists of
a task scheduler, where the exact cause of the interrupt is
determined (usually a clock interrupt) and the next task
from the task control block is executed.  After task
completion, control returns to the point of interrupt.

;
; INTERCEPT ALL CLOCK INTERRUPTS AND TEST THE WIDGET
; ON PORT AB.  IF THE READY LINE (BIT 8) IS TRUE
; (HIGH OR A 1) TURN OH THE COFFEE POT ON PORT DE.
; THEN JUMP TO THE NORMAL DOS INTERRUPT HANDLER
;

ORG 4012H ; REPLACE THE JUMP
JP HERE ; TO THE DOS INTERRUPT

; PROCESSOR WITH A JUMP
; TO OUR OWN.

ORG 0FD00H ; OUR INTERRUPT HANDLER
HERE DI ; DISABLE FURTHER

; INTERRUPTS
PUSH AF ; WE'LL NEED AF REGS
IN A,(0ABH) ; GET WIDGET STATUS
OR A ; SET STATUS FOR BIT 8
JP M,TOCP ; WIDGET ON IF MINUS
POP AF ; WIDGET OFF, RST REGS
JP 4518H ; GO TO DOS INTERRUPT

; HANDLER
TOCP LD A,21H ; CODE TO TURN ON COFFEE

; POT
OUT (0DEH),A ; SEND COMMAND TO POT
POP AF ; THEN RST REGS
JP 4518H ; AND GO TO DOS INTERRUPT
. ; HANDLER
.
.

CALL 09B4 Move SP Value In
BC/DC Into WRA1

Moves the single precision value in BC/DE into WRA1.
HL is destroyed BC/DE is left intact. Note - the mode flag
is not updated!

.

.
LD BC,(PART1) ; GET FIRST ARGUMENT
LD DE,(PART2) ; REMAINDER OF ARGUMENT

; NOTE - WE HAVE ASSUMED THAT
; WRA1 CURRENTLY CONTAINS A
; SINGLE PRECISION VALUE !!!

CALL 09B4H ; MOVE PART1 TO WRA1
LD BC,(PART3) ; GET VALUE TO BE ADDED
LD DE,(PART4) ; REST OF VAL
CALL 0716H ; MOVE RESULT (SUM) TO WRAS

.

.
PART2 DEFW 0000H ; LSB OF SP 1.5
PART1 DEFW 8140H ; EXPONENT AND MSB OF SP 1.5
PART4 DEFW 0000H ; LSB OF SP XX
PART3 DEFW 0000H ; EXPONENT/MSB OF SP XX

.

.

.

CALL 09B1 Moves A SP Value Pointed
To By HL To WRA1

Loads a single precision value pointed to by HL into
BC/DE and then moves it to WRA1. Destroys HL/BC/DE.

.

.
LD HL,VAL ; GET ADDR OF VALUE TO MOVE
CALL 09B1H ; MOVE VALUE TO WRA1
.
.
.

VAL DEFW 8140H ; SINGLE PREC 1.5
DEFW 0000H ; REMAINDER OF 1.5
.
.
.



29

CALL 09C2 Load A SP Value Into
BC/DE

Loads a single precision value pointed to by HL into
BC/DE.  Uses all registers.

;
; COMPUTE THE PRODUCT OF TWO SP NUMBERS AND MOVE THE
; PRODUCT TO BC/DE.
;

LD HL,VAL1 ; ADDR OF VALUE 1
CALL 09B1H ; MOVE IT TO WRA1
LD HL,VAL2 ; ADDR OF VALUE 2
CALL 09C2H ; LOAD IT INTO BC/DE
LD BC,(4121H) ; LOAD EXPONENT/MSB
LD DE,(4123H) ; LOAD LSB
.
.
.

VAL1 DEFW XXXX
DEFW XXXX

VAL2 DEFW XXXX
DEFW XXXX
.
.
.

CALL 09BF Loads A SP Value From
WRA1 Into BC/DE

Loads a single precision value from WRA1 into BC/DE.
Note, the mode flag is not tested by the move routine. It is
up to the caller to insure that WRA1 actually contains a
single precision value.

.

.
LD HL,VAL1 ; ADDR OF VALUE TO MOVE TO WRA1
CALL 09B1H ; MOVE VAL1 TO WRA1
LD HL,VAL2 ; ADDR OF VALUE TO BE ADDED
CALL 09C2H ; LOAD VALUE TO BE ADDED TO BC/DE

CALL 0716H ; DO SINGLE PRECISION ADD
CALL 09BFH ; LOAD RESULT INTO BC/DE
LD (SUM1),DE ; SAVE LSB
LD (SUM2),BC ; SAVE EXPONENT/MSB
.
.
.

SUM1 DEFW 0 ; HOLDS LSB OF SINGLE PRECISION
SUM2 DEFW 0 ; HOLDS EXPONENT/MSB
VAL1 DEFW 0000H ; LSB OF S.P 2.0

DEFW 8200H ; EXPONENT/MSB OF S.P 2.0
VAL2 DEFW 00000 ; LSB OF S.P. 5.0

DEFW 8320H ; EXPONENT/MSB OF S.P. 5.0
.
.
.

CALL 09A4 Move WRA1 To
Stack

Moves the single precision value in WRA1 to the stack.  It
is stored in LSB/MSB/Exponent order.  All registers are left
intact.  Note, the mode flag is not tested by the move
routine, it is simply assumed that WRA1 contains a single
precision value.

;
; ADD TWO SINGLE PRECISION VALUES TOGETHER AND SAVE
; THE SUM ON THE STACK. CALL A SUBROUTINE WHICH
; WILL LOAD THE VALUE FROM THE STACK, PERFORM IT'S OWN
; OPERATION AND RETURN.
;

LD HL,VAL1 ; ADDR OF VALUE TO MOVE TO WRA1
CALL 09B1H ; MOVE VAL1 TO WRA1
LD HL,VAL2 ; ADDR OF VALUE TO BE ADDED
CALL 09C2H ; LOAD VALUE TO BE ADDED TO BC/DE
CALL 0716H ; DO SINGLE PRECISION ADD
CALL 09A4H ; SAVE SUM ON STACK
CALL NSUB ; CALL NEXT SUBROUTINE
.
. ; RETURN WITH NEW VALUE IN
. ; IN WRA1.
.

NSUB POP HL ; GET RETURN ADDR
LD (RET),HL ; MOVE IT TO A SAFE PLACE
LD HL,VAL3 ; ADDR OF QUANTITY TO ADD
CALL 09B1H ; MOVE VAL3 TO WRA1
POP BC ; GET EXPONENT/MSB
POP DE ; GET LSB
CALL 0716H ; ADD TO VALUE PASSED
LD HL,(RET) ; GET RETURN ADDR
JP (HL) ; AND RET TO CALLER

VAL1 DEFW 0000H ; LSB OF S.P 2.0
DEFW 8200H ; EXPONENT/MSB OF S.P 2.0

VAL2 DEFW 00000 ; LSB OF S.P. 5.0
DEFW 8320H ; EXPONENT/MSB OF S.P. 5.0

VAL3 DEFW 0AA6CH ; LSB OF S.P. -.333333
DEFW 7FAAH ; EXPONENT/MSB OF S.P. -.33333
.
.

CALL 09D7 General Purpose Move

Moves contents of B-register bytes from the address in DE
to the address given in HL. Uses all registers except C.

;
; BLANK FILL A DCB THEN MOVE A NAME INTO IT
;

LD A,20H ; HEX VALUE FOR BLANK
LD B,32 ; NO. OF BYTES TO BLANK
LD DE,IDCB ; DE = ADDR OF DCB

LOOP LD (DE),A ; STORE A BLANK INTO DCB
INC DE ; BUMP STORE ADDR
DJNZ LOOP ; LOOP TILL DCB BLANKED
LD DE,NAME ; NOW, MOVE FILE NAME TO IDCB
LD HL,IDCB ; DE = NAME ADDR, HL = DCB ADDR
LD B,LNG ; NO. OF CHARS IN NAME TO MOVE
CALL 09D7H ; MOVE NAME TO DCB
.
.
.

IDCB DEFS 32 ; EMPTY DCB
LNG EQU     ENDX-$ ; LET ASSEMBLER COMPUTE LNG OF

; FILE NAME
NAME DEFM 'FILE1/TXT' ; NAME TO BE MOVED TO DCB
ENDX EQU $ ; SIGNAL END OF NAME

.

.

CALL 0982 Variable Move Routine

Moves the number of bytes specified in the type flag
(40AF) from the address in DE to the address in HL, uses
registers A, DE, HL.

;
; LOCATE THE ADDRESS OF A DOUBLE PRECISION VARIABLE
; THEN MOVE IT TO A LOCAL STORAGE AREA.
;

LD HL,NAME1 ; NAME OF VARIABLE TO LOCATE
CALL 260DH ; GET ADDR OF STRING X
RST 20H ; MARE SURE IT'S DBL PREC.
JR NC,OK ; JMP IF DBL PREC.
JP ERR ; ELSE ERROR

OK LD HL,LOCAL ; HL - LOCAL ADDR
; DE - VARIABLE ADDR

CALL 0982H ; MOVE VALUE FROM VLT TO LOCAL
; AREA.

.

.

.
ERR .

.
NAME1 DEFM 'X' ; NAME OF VARIABLE TO LOCATE

DEFB 0 ; MUST TERM WITH A ZERO
LOCAL DEFS 8 ; ENOUGH ROOM FOR DBL PREC. VALUE

.

.

.



30

CALL 29C8 String Move

On entry, HL points to the string control block for the string
to be moved, and DE  contains the destination address.  All
registers are used.  The string length and address are not
moved. String control blocks have the format:

DEFB X STRING LENGTH
DEFW ADDR STRING ADDRESS

;
; LOCATE THE ADDRESS OF A STRING VARIABLE CALLED F$.
; MOVE THE STRING F$ TO A LOCAL STORAGE AREA CALLED
 DCB.
;

LD HL,NAME ; NAME OF VARIABLE TO LOCATE
CALL 260DH ; FIND ADDR OF STRING F$
RST 20H ; MAKE SURE IT'S A STRING
JR Z,OK ; JMP IF STRING
JP ERR ; ELSE ERROR

 OK LD A,(DE) ; GET LENGTH OF STRING
CF 33 ; WHICH MUST BE < 33
JP P,ERR ; ERR, STRING LNG > 32
PUSH DE ; SHORTCUT FOR MOVING DE TO BL
POP HL ; ADDE OF STRING TO HL
LD DE,LOCAL ; DE - LOCAL ADDR
CALL 29C8H ; MOVE STRING VARIABLE TO

; LOCAL AREA
.

ERR .
.

NAME DEFM 'F$' ; NAME OF VARIABLE TO FIND
DEFB 0 ; REQUIRED TO TERM NAME

LOCAL DEFS 32 ; LOCAL STORAGE AREA
.
.
.

Basic Functions

Basic Functions differ from System Functions because they
deal mainly with tables in the Communications Region
(CR).  Because of this, these entry points assume that the
CR has been initialized and properly maintained.  This
means that the BASIC Interpreter must have been entered
prior to calling any of these routines, and the BASIC utility
in RAM must be intact.  The assembly program making the
CALL must be running as a subroutine called by a BASIC
program.

For a complete description of the tables and storage areas in
the Communication Region see chapter 4.

CALL 1B2C Search For Line
Number

Searches the Program Statement Table (PST) for a
BASIC statement with the line number specified in the
DE register pair. All registers are used. The exit conditions
are:

STATUS CONDITION REGISTERS

C/Z LINE FOUND. BC = STARTING ADDRESS OF LINE IN PST.
HL = ADDRESS OF FOLLOWING  LINE IN PST.

NC/Z LINE DOES NOT EXIST. LINE NUMBER TOO LARGE
HL/BC = ADDRESS OF NEXT AVAILABLE LOCATION IN

NC/NZ LINE DOES NOT EXIST. BC = ADDRESS OF FIRST
LINE NUMBER GREATER THAN THE ONE SPECIFIED.
HL - ADDRESS OF FOLLOWING LINE.

;
; LOCATE THE ADDRESS OF BASIC STATEMENT NUMBER 750
; IN THE PST.  IF THE LINE DOES NOT EXIST RETURN A
; STATUS OF -1 IF IT IS LARGER THAN ANY CURRENT LINE
; NUMBER, OR A -2 IF IT THERE ARE LINES GREATER THAN
; 750.   IF THE LINE IS FOUND RETURN A STATUS OF ZERO.
;

.
LD DE,750 ; LINE NUMBER TO SEARCH FOR
CALL 1B2CH ; SEEK LINE IN PST
JR NC,NO ; NC SET IF LINE NOT THERE
LD HL,3 ; INCREMENT TO STEP OVER
ADD HL,BC ; POINTER TO NEXT LINE/LINE NO.

; RST BELOW WILL INCREMENT
; BEFORE LOADING

RST 10H ; FETCH FIRST CHAR OF
; STATEMENT.

.

.
LD A,0 ; SIGNAL LINE FOUND
RET ; RETURN TO CALLER

NO JR NC,M2 ; JMP IF LINE NO. TOO BIG
LD A,0FFH ; SIGNAL LINE NOT THERE
RET ; RETURN TO CALLER

M2 LD A,0FEH ; SIGNAL LINE NOT THERE
; TOO BIG

RET ; RETURN TO CALLER

CALL 260D Find Address Of
Variable

This entry point searches the Variable List Table (VLT)
for a variable name which matches the name in the string
pointed to by HL.  If the variable exists, its address is
returned in DE. If it is not defined, then it is created with an
initial value of zero and its address is returned in DE.
Dimensioned and non-dimensioned variables may be
located, and suffixes for data mode may be included in the
name string. A byte of machine zeros must terminate the
name string. All registers are used.

;
; LOCATE THE ADDRESS OF THE VARIABLE A3
;

LD HL,STRNG ; NAME OF VARIABLE TO LOCATE
CALL 260DH ; FIND IT'S ADDRESS IN VLT
LD (ADDR),DE ; SAVE FOR FUTURE REFERENCE
.
.

STRNG DEFM 'A3' ; VARIABLE NAME IS A3
DEFB 0

STRNG DEFM 'A(25)' ; VARIABLE NAME IS A(25)
DEFB 0

STRNG DEFM 'A%' ; VARIABLE NAME IS A%
DEFB 0



31

CALL 1EB1 GOSUB

Can be used to execute the equivalent of a GOSUB
statement from an assembly program.  It allows a BASIC
subroutine to be called from an assembly subroutine.  After
the BASIC subroutine executes, control returns to the next
statement in the assembly program.  All registers are used.
On entry, the HL must contain an ASCII string with the
starting line number of the subroutine.

;
; SIMULATE A GOSUB STATEMENT FROM AN ASSEMBLY LANGUAGE PROGRAM
;

LD     HL,STRNG   ; ADDRESS OF BASIC LINE NUMBER TO GOSUB TO
CALL   1EB1H      ; EQUIVALENT OF A GOSUB 1020
.
.          ; WILL RETURN HERE WHEN BASIC PROGRAM
.          ; EXECUTES A RETURN
.

STRNG DEFM '1020'   ; LINE NO. OF BASIC SUBROUTINE
DEFB 0

CALL 1DF7 TRON

Turns TRON feature on.  Causes line numbers for each
BASIC statement executed to be displayed. Uses A-
register.

;
; TURN TRACE ON THEN EXECUTE A BASIC SUBROUTINE
;

CALL 1DF7H ; TURN TRACE ON
LD HL,LN ; LINE NO. TO GOSUB
CALL lEB1H ; DO A GOSUB 1500
.
.
.

LN DEFM '1500' ; LINE NO. OF BASIC SUBROUTINE
DEFB 0

CALL 1DF8 TROFF

Disables tracing feature. Uses A register.

;
; ENABLE TRACE. EXECUTE BASIC SUBROUTINE. UPON
; RETURN DISABLE TRACING.
;

CALL 1DF7H ; TURN TRACE ON
LD HL,LN ; LINE NO. OF BASIC SUBROUTINE
CALL 1EB1H ; DO A GOSUB 2000
CALL 1DF8H ; TURN OFF TRACING
RET ; RETURN TO CALLER

LN DEFM '2000' ; LINE NO. OF BASIC SUBROUTINE
DEFB 0

JP 1EDF RETURN

Returns control to the BASIC statement following the last
GOSUB call. An assembly program called by a BASIC
subroutine may wish to return directly to the original caller
without returning through the subroutine entry point. This
exit can be used for that return. The return address on the
stack for the call to the assembly program must be cleared
before returning via 1EDF.

300 GOSUB 1500 CALL BASIC SUBROUTINE
310 GOSUB 1510 RETURN HERE FROM SUBROUTINE CALL
320  .
     .
     .
1500 Z=USR1(0) CALL ASSEMBLY SUBROUTINE & RETURN

1510 Z=USR2(0) CALL ANOTHER SUBROUTINE & RETURN
1530 .
     .
     .

;
; ENTRY POINT FOR USR1 SUBROUTINE
;

. ; DO WHATEVER PROCESSING IS

. ; REQUIRED

.
POP AF ; CLEAR RETURN ADDR TO 1510

; FROM STACK
JP 1EDFH ; RETURN DIRECTLY TO 310

;
; ENTRY POINT FOR USR2 SUBROUTINE
;

. ; PERFORM NECESSARY PROCESSING

. ; FOR USR2 CALL
POP AF ; CLEAR RETURN ADDR TO 1520
JP 1EDFH ; RETURN DIRECTLY TO 320

CALL 28A7 Write Message

Displays message pointed to by HL on current system
output device (usually video).  The string to be displayed
must be terminated by a byte of machine zeros or a carriage
return code 0D.  If terminated with a carriage return, control
is returned to the caller after taking the DOS exit at 41D0
(JP 5B99).  This subroutine uses the literal string pool table
and the String area.  It should not be called if the
communications region and the string area are not properly
maintained.

;
; WRITE THE MESSAGE IN MLIST TO THE CURRENT SYSTEM
; OUTPUT DEVICE.
;

LD HL,MLIST ; HL - ADDR OF MESSAGE
CALL 28A7H ; SEND TO SYSTEM OUTPUT DEVICE
.
.
.

MLIST DEFM 'THIS IS A TEST'
DEFB 0DH ; THIS TERMINATOR REQUIRED
.
.
.

CALL 27C9 Return Amount Of
Free Memory

Computes the amount of memory remaining between the
end of the variable list and the end of the stack.  The result
is returned as a single precision number in WRA1 (4121 -
4124).

;
; TAKE ALL AVAILABLE MEMORY BETWEEN THE STACK AND
; THE END OF THE VLT AND DIVIDE IT INTO REGIONS FOR
; USE IN A TOURNAMENT SORT
;

.

.



32

DI ; MUST GO INHIBITED BECAUSE
; THERE WILL BE NO STACK SPACE
; FOR INTERRUPT PROCESSING

CALL 27C9H ; GET AMT OF FREE SPACE
CALL 0A7FH ; CONVERT IT TO INTEGER
LD DE,(4121H) ; GET IT INTO DE
LD HL,500 ; MAKE SURE IT'S AT
RST 18H ; LEAST 500 BYTES
JR C,ERR ; ERR - INSUFFICIENT SPACE
LD HL,(40D1H) ; START OF AREA
LD (EVLT),HL ; SAVE FOR RESTORATION
LD HL,0 ; SO WE CAN LOAD CSP
ADD HL,SP ; END OF AREA
LD (ECSP),HL ; SAVE FOR RESTORATION
.
.
.

CALL 2B75 Print Message

Writes string pointed to by HL to the current output device.
String must be terminated by a byte of zeros.  This call is
different from 28A7 because it does not use the literal string
pool area, but it does use the same display routine and it
takes the same DOS Exit at 41Cl. Uses all registers. This
routine can be called without loading the BASIC utility, if a
C9 (RET) is stored in 41C1.

;
; WRITE MESSAGE TO CURRENT OUTPUT DEVICE
;

LD HL,MLIST ; ADDRESS OF MESSAGE
CALL 2B75H ; SEND MEG TO SYSTEM DEVICE
.
.

MLIST DEFM 'THIS IS A TEST'
DEFB 0 ; REQUIRED TERMINATOR
.
.
.

Internal Number Representation

BASIC represents integers as signed 16 bit quantities.  Bit
15 contains the sign bit while bits 0-14 hold the magnitude.
The largest possible positive value that can be represented
is 32767 (dec.) or 7FFF (hex).  The smallest possible
negative value that can be represented is -32768 (dec.) or
8000 (hex).

Bit -->   15 14 13 12 11 10  9  8  7  6  5  4  3  2  1  0

        Sign:                 Magnitude
        0 = Positive
        1 = Negative

positive values 0000 - 7FFF (hex.) : 0 to 32767 (dec.)
Negative values FFFF - 8000 (hex.) : -l to -32768
(dec.)

Note - negative values are represented as the one's
complement of the positive equivalent.

BASIC supports two forms of floating point numbers.  One
type is single precision and the other is double precision.
Both types have a signed seven bit exponent.  Single
precision numbers have a signed 24 bit mantissa while
double precision values have a signed 56 bit mantissa. Both
types have the following format

Bit  -->         31        24    23      16    15       8   7        0

Sign of exponent: Magnitude of the Mantissa (value) is left justified
0 = positive, move exponent.  Number (normalized) so that MS bit is on
binary point to the of bit positions position # 23.  If positive then bit 23
right. to move binary will be set to 1 during arithmetic
1 = negative, move point. operations.  Negative values stored as
binary point to the positive, but with bit 23 on.
left.

Sign of mantissa:
0 = value positive
1 = value negative

The only difference between single and double precision is
in the number of bits in the mantissa.  The maximum
number of significant bits representable in a positive single
precision value is 2 ** 24-1 or 8 388 607 decimal or
7F FF FF hex.  Double precision numbers have an extended
mantissa so positive values up to 2 ** 56-1, or 3.578 X 10
** 16 can be represented accurately.

These numbers 8 388 607 and 3.578 X 10 ** 16 are not the
largest numbers that can be represented in a single or
double precision number, but they are the largest that can
be represented without some loss of accuracy.  This is due
to the fact that the exponent for either type of number
ranges between 2 ** -128 and 2 ** 127.  This means that
theoretically the binary point can be extended 127 places to
the right for positive values and 128 to the left for negative
values even though there are only 24 or 56 bits of
significance in the mantissa.  Depending of the type of data
being used (the number of significant digits) this may be all
right.  For example Planck's constant which is 6.625 X 10
** -34 J-SEC could be represented as a single precision
value without any loss of accuracy because it has only four
significant digits.  However if we were totaling a money
value of the same magnitude it would have to be a double
precision value because all digits would be significant.



33

Chapter 3

Cassette & Disk

This chapter contains an introductory description of
physical I/O operations for the cassette and disk.   The
sample programs are for purposes of illustration only and
are not recommended for adaptation to general applications.
There may be special situations, however when a simple
READ/WRITE function is needed and for limited
applications they will serve the purpose.

Cassette I/O

Cassette I/O is unusual from several aspects.  First, each
byte is transmitted on a bit-by-bit basis under software
control.  This is radically different from all other forms of
I/O where an entire byte is transferred at one time.  For
most I/O operations, referencing memory or executing an
IN or OUT instruction, is all that is required to transfer an
entire byte between the CPU and an external device.
However, If the device is a cassette, each bit (of a byte to be
transferred) must be transferred individually by the
software.

The second unusual aspect is the procedure used for
transmitting these bits.  Exact timing must be adhered to
and the program must use different code depending on
whether a binary zero or one is to be written.  Each bit
recorded consists of a clock pulse (CP) followed by a fixed
amount of erased tape followed by either another CP if a
binary one is represented, or a stretch of erased tape if a
binary zero is being represented.  A binary one and zero
would appear as:

     <---C--->        <----D--->

<-------------A-----------><-------------B-------------->

Binary One

The distance between points A, B, C, and D is measured in
units of time. Because time can be measured in machine
cycles the value given for distances will be in machine
cycles where one instruction (any instruction regardless of
how long it is) equals one cycle and one cycle equals one
microsecond. This is crude but workable.  The sum of A B
is supposed to be 2 milliseconds for Level II.

Using the crudity described above and counting instructions
used in the Level II software gives the following values.

A  B 1.4 millisec per half bit 2.8 millisec per bit.
C  .20 millisec * 2 per CP  .40 millisec
D  1.0 millisec

Before discussing programming for cassette I/O in any
detail we should review the fundamentals.  Drive selection
is accomplished by storing either a 01 (drive 1) or 02 (drive
2) in 37E4.  Motor start and loading or clearing the data
latch is achieved by sending a command value to the
cassette controller on port FF.  The command value is
shown below.

       7 6 5 4 3 2 1 0
       x x x x x x x x                : 00 - erase tape
                             outsig 1 : 01 - positive signal
                             outsig 2 : 10 - negative signal
Not used
for cassette                   1 = motor on
operations                     0   motor off

                                       1 = 32 char/line
                                       0 = 64 char/line

   <-----Clock Pulse--------><-------Data Pulse------->



34

Be careful to preserve the current video character size when
sending commands to the cassette.  The system maintains a
copy of the last command sent to the video controller in
403D. Bit 3 of that word should be merged with any
commands issued to the cassette.

A write operation of one bit (called a bit cell) can be
divided into two steps.  First a clock pulse (CP) is written to
signal the start of a bit.  It is followed by a strip of erased
tape which is considered part of the CP. Next, another CP is
written if the bit is a one, or more blank tape is written if
the bit is a zero.

Read operations begin by searching for the clock pulse and
skipping to the data pulse area.  The data pulse area is then
read returning a zero if blank tape was encountered or a one
if non-blank tape was found.  Below are examples of code
that could be used for cassette operations. The code used by
Level II can be found around the area 01D9 - 02A8 in the
Level II listing.

Assembler Object Code Format

DOS loads disk object files with a utility program called
LOAD.  They can also be loaded under DOS by entering
the name of a file that has an extension of CMD.  The
format of a disk object file is shown below.  It is more
complex than a cassette file because it has control codes
embedded in the object code.  The loader reads the file into
a buffer before moving the object code to its designated
address.  The control codes are used to indicated to the
loader where the code is to be loaded, how many bytes are
to be loaded, and where execution is to begin.

Control Code:    01  (data to be loaded follows)
Count       :    XX  (count of bytes to load, 0 = 256)
Load Address:    XX  (load address in LSB/MSB order)
                 XX
Load Data   :    XX
                 XX
                 .
Control Code:    02  (beginning execution address follows)
                 XX  (this byte is to be discarded)
Address     :    XX  (execution address in
                 XX  (LSB/MSB order)

Control Code:  03 - 05 (following data is to be skipped)
Count       :    XX    (count of bytes to skip)
Skip Data   :    XX    (this data is to be skipped)
                 XX
                 .

Cassette Recording Format

The recording format used by Level II is as follows:

1: BASIC Data Files

0 0 0 0 . . . 0 A5  X X X X  . . . X
( 256 zeros )

   Synch Bytes         Data Bytes

2: BASIC Programs

0 0 0 0 . . . 0 A5 D3 D3 D3 Y X X X X . . X 00 00 00

Synch Bytes
          File Header             BASIC        EOF
                           Name  Program      Marker

3: Absolute Assembler Programs

55 N N N N N N 3C Y ZZ X X X X . . . X C 78 TA

                                               Transfer address
Synch   Start          Program or Data       Transfer
        of                Checksum           address follows
File    binary         Load address
name    file          Number of bytes to load

SELECT UNIT AND TURN ON MOTOR
LD A,01 ; CODE FOR UNIT 1
LD (37E4H),A ; SELECT UNIT 1
LD A,04 ; COMMAND VALUE: TURN ON MOTOR
OUT (0FFH),A ; START MOTOR, CLEAR DATA LATCH

WRITE BYTE CONTAINED IN THE A REGISTER
PUSH AF
PUSH BC
PUSH DE
PUSH HL ; SAVE CALLERS REGISTERS
LD L,8 ; NUMBER OF BITS TO WRITE
LD H,A ; H = DATA BYTE

LOOP CALL CP ; WRITE CLOCK PULSE FIRST
LD A,H ; GET DATA BYTE
RLCA ; HIGH ORDER BIT TO CARRY
LD H,A ; SAVE REPOSITIONED BYTE
JR NC,WR ; BIT WAS ZERO. WRITE BLANK TAPE
CALL CP ; BIT WAS ONE. WRITE A ONE DATA PULSE

TEST DEC L ; ALL BITS FROM DATA BYTES WRITTEN ?
JR NZ,LOOP ; NO!  JUMP TO LOOP
POP HL ; YES! RESTORE CALLERS REGISTERS
POP DE
POP BC
POP AF
RET ; RETURN TO CALLER

WR LD B,135 ; DELAY FOR 135 CYCLES (988 USEC) WHILE
WR1 DJNZ WR1 ; BLANK TAPE IS BEING WRITTEN

JR TEST ; GO TEST FOR MORE BITS TO WRITE
CP LD A,05 ; COMMAND VALUE MOTOR ONE, OUTSIG 1

OUT (0FFH),A ; START OF CLOCK PULSE
LD B,57 ; DELAY FOR 57 (417 USEC) CYCLES

CP1 DJNZ CP1 ; GIVES PART OF CP
LD A,06 ; COMMAND VALUE: MOTOR ON, OUTSIG 2
OUT (0FFH),A ; 2ND PART OF CLOCK PULSE
LD B,57 ; DELAY FOR 57 CYCLES (417 USEC)

CP2 DJNZ CP2 ; GIVES PART OF CP
LD A,4 ; COMMAND VALUE: MOTOR ON, NO OUTSIG
OUT (0FFH),A ; START ERASING TAPE
LD B,136 ; DELAY FOR 136 CYCLES (995 USEC)

CP3 DJNZ CP3 ; GIVES TAIL OF CLOCK PULSE
RET ; RETURN TO CALLER

READ NEXT BYTE FROM CASSETTE INTO A REGISTER
XOR A ; CLEAR DESTINATION REGISTER
PUSH BC
PUSH DR
PUSH HL ; SAVE CALLERS REGISTERS

LOOP LD B,8 ; NUMBER OF BITS TO READ
CALL RB ; READ NEXT BIT. ASSEMBLE INTO

; BYTE BUILT THUS FAR.
POP HL
DJNZ LOOP ; LOOP UNTIL 8 BITS USED
POP DE
POP BC ; RESTORE CALLERS REGISTERS
RET ; RETURN TO CALLER

RB PUSH BC
PUSH AF

RB1 IN (0FFH),A ; READ DATA LATCH
RLA ; TEST FOR BLANK/NON-BLANK TAPE
JR NC,RB1 ; BLANK, SCAN TILL NON-BLANK

; IT WILL BE ASSUMED TO BE START
; OF A CLOCK PULSE.

LD B,57 ; DELAY FOR 57 CYCLES WHILE
RB2 DJNZ RB2 ; SKIPPING OVER FIRST PART OF CP

LD A,04 ; COMMAND VALUE: MOTOR ON, CLEAR
OUT (0FFH),A ; DATA LATCHES
LD B,193 ; DELAY FOR 193 CYCLES WHILE

RB3 DJNZ RB3 ; PASSING OVER END OF CP
IN A,(0FFH) ; WE SHOULD BE POSITIONED INTO

; THE DATA PULSE AREA. READ
; THE DATA PULSE.

LD B,A ; SAVE DATA PULSE
POP AF ; ACCUMULATED BYTE THUS FAR
RL B ; DATA PULSE TO CARRY WILL BE A

; ZERO IF BLANK TAPE, 1 IF NON-BLANK
RLA ; COMBINE NEW DATA PULSE (1 BIT)
PUSH AF ; WITH REST OF BYTE AND SAVE
LD A,4 ; COMMAND VALUE: MOTOR ON, CLEAR OUTSIG
OUT (0FFH),A ; CLEAR DATA LATCHES
LD B,240 ; DELAY LONG ENOUGH TO SKIP TO

RB4 DJNZ RB4 ; END OF DATA PULSE
POP BC
POP AF ; A = DATA BYTE
RET

TURN OFF MOTOR
LD A,00 ; COMMAND VALUE: MOTOR OFF
OUT (0FFH),A ; TURN MOTOR OFF
RET



35

Disk I/O

The disk operations discussed in this section are
elementary in as much as there is no consideration given to
disk space management or other functions normally
associated with disk I/O.  What is presented are the
fundamental steps necessary to position, read, and write
any area of the disk without going through DOS. It will be
assumed that the reader is familiar with the I/O facility
provided by DOS and is aware of the pitfalls of writing a
diskette without going through DOS.

Disks which normally come with a Model I system are
single sided, 35 track 5 1/4' mini-drives.  It is possible to
substitute other drives with a higher track capacity such as
40, 77, or 80 tracks, but then a modified version of DOS
must be used. Dual sided mini-drives are becoming
available and eventually they should replace the single
sided drives. Dual density drives are another type of mini-
drive that are available, but like the dual sided drives they
require a modified version of DOS.

The type of programming used in this example is called
programmed I/O. It is called that because the program must
constantly monitor the controller status in order to
determine if it is ready to send or receive the next data byte.
Thus each byte is transferred individually under program
control.  An alternative to programmed I/O is DMA or
Direct Memory Access.  Using this method the controller is
told the number of bytes to transfer and the starting transfer
address and it controls the transfer of data leaving the CPU
free to perform other tasks. On the Model I systems there is
no DMA facility so programmed I/O must be used.

This example will assume that a DOS formatted diskette is
being used.  New diskettes are magnetically erased.  Before
they can be used they must be formatted.  That is each
sector and track must be uniquely identified by recording its
track and sector number in front of the data area of each
sector. There is some variability in the coded information
which precedes each sector so it is not always possible to
read any mini-diskette unless it originated on the same type
of machine.

Like most of the I/O devices on the Model I the disk is
memory mapped. There are five memory locations
dedicated to the disk. They are:

37E1 Unit Select Register
37EC Command/Status Register
37ED Track Update Register
37EE Sector Register
37EF Data Register

All disk commands except for unit selection are sent to
37EC. If the command being issued will require additional
information such as a track or sector number, then that data
should be stored in the appropriate register before the
command is issued. You may have noticed that the
command and status register have the same address.

Because of that, a request for status (load 37EC) cannot
occur for 50 microseconds following the issuing a
command (store 37EC).

Unit selection is accomplished by storing a unit mask value
into location 37E1. That mask has the format:

     BIT   7  6  5  4  3  2  1  0
           X  X  X  X  X  X  X  X

Not Used                             1 = SELECT UNIT 0
                                     1 = SELECT UNIT 1
                                     1 = SELECT UNIT 2
                                     1 = SELECT UNIT 3

More than one unit can be selected at a time.  For example a
mask of 3 would select units 0 and 1. When any unit is
selected the motor on all units are automatically turned on.
This function is performed automatically by the expansion
interface.

Controller Commands

The Model I uses a Western Digital FD 1771B-01 floppy
disk controller chip. It supports twelve 8-bit commands.
They are:

Restore:  Positions the head to track 0

         7  6  5  4  3  2  1  0    <-- Bit

         0  0  0  0  X  X  X  X

       Mode                       Stepping rate:
00 = No verify bead position         00 = 6 mS / step
01 = Verify head position            01 = 6 mS / step
10 = Not used                        10 = 10 mS / step
11 = Verify head position            11 = 20 mS / step

Seek:  Positions the head to the track specified in the data
register (37EF).

         7  6  5  4  3  2  1  0    <-- Bit

         0  0  0  1  X  X  X  X

       Mode                       Stepping rate

Step:  Moves the head one step in the same direction as last
head motion.

         7  6  5  4  3  2  1  0    <-- Bit

         0  0  1  X  X  X  X  X

Track update             Stepping rate
                      Mode

0 = No track register update
1 = Track register update



36

Step Head In:  Moves the head in towards the innermost
track one position.

         0  1  0  X  X  X  X  X

Track update                       Stepping rate
                                   Mode

Step Head Out:  Moves the head out towards the outer-
most track one position

         0  1  1  X  X  X  X  X

Track update                       Stepping rate
                                   Mode

Read Data:  Transmits the next byte of data from the sector
specified by the value in the sector register.

         1  0  0  X  X  X  0  0

Multi-sector                   Head settle:
0 = Read 1 Sect                0 = No delay
1 = Multi-sector               1 = 10 mS delay
                               Format:
                               0 = Non IBM
                               1 = IBM

Write Data:  Sends the byte of data in the data register to
the next position in the sector specified by the value in the
sector register.

         1  0  1  X  X  X  X  X

Multi-sector                       Address mark:
0 = Write 1                        00 = FB, 01 = FA
1 = Multi-sector                   10 = F9, 11 = F8
Format                             Head settle:
0 = Non IBM                        0 = Non
1 = IBM                            1 = 10 mS delay

Read Track:  Reads an entire track beginning with the index
mark.

         1  1  1  0  0  1  0  0

Read Address: Reads the address field from the next
sector to pass under the head.

         1  1  0  0  0  1  0  0

Write Track:  Writes a full track starting at the index mark
and continuing until the next index mark is encountered.

 1  1  1  1  0  1  0  0

Force Interrupt:  Terminates the current operation and / or
generates an interrupt if one of the following four
conditions is true:

 1  1  0  1  X  X  X  X

                          Terminate conditions:
                          00 = None
                          01 = Interrupt on ready
                          02 = Interrupt on not ready
                          04 = Interrupt on index pulse
                          10 = Hone

Read Status:  The status of the Floppy Controller is returned
whenever location 37EC is read.  The status word has the
following format:

 X  X  X  X  X  X  X  X

                          Read / Write       Seek

                          Busy               Busy
                          DRQ                DRQ
                          Lost Data          Missing Address
                          CRC Error          0
                          Missing Record     0
                          0                  0
                          0                  Write Protect
                          Not Ready          Not Ready



37

Disk Programming Details

Disk programming can be broken down into several easily
managed steps. They are:

1. Select the unit and wait for ready.
2. Position the head over the desired track.
3. Issue the Read/Write command for the required sector
4. Transfer a Sectors worth of data, on a byte at a time basis.

Each transfer must be preceded by a test to see if the controller
either has the next data byte, or is ready to accept the next data
byte.

This program demonstrates a single sector read from track
25 (decimal), sector 3.

ORG 7000H
LD BC,256 ; BYTE COUNT
PUSH BC ; B = 1 C = 0
LD HL,BUFF ; BUFFER ADDRESS
LD A,1 ; UNIT SELECT MASK (DRIVE 0)
LD (37E1H),A ; SELECT DRIVE 0, START MOTOR
LD D,25 ; TRACK NUMBER
LD E,3 ; SECTOR NUMBER
LD (37EEH),DE ; SPECIFY TRACK AND SECTOR

; TRACK NO. TO DATA REGISTER
; (37EFH)
; SECTOR NO. TO SECTOR REGISTER.

LD A,1BH ; SEEK OP CODE. NO VERIFY
; (FOR VERIFY 17H)

LD (37ECH),A ; SEEK REQ. TO COMMAND REGISTER.
LD B,6 ; GIVE CONTROLLER A CHANCE

; TO DIGEST
DELAY DJNZ DELAY ; COMMAND BEFORE ASKING STATUS
WAIT LD A,(37ECH) ; GET STATUS OF SEEK OF

BIT 0,A ; TEST IF CONTROLLER BUSY
JR NZ,WAIT ; IF YES, THEN SEEK NOT DONE
LD A,88H ; SEEK FINISHED. LOAD READ

; COMMAND
LD (37ECH),A ; AND SEND TO CONTROLLER
LD B,6 ; GIVE CONTROLLER A CHANCE TO

DELAY1DJNZ DELAY1 ; DIGEST COMMAND BEFORE
; REQUESTING
; A STATUS

WAIT1 LD A,(37ECH) ; NOW, ASK FOR STATUS
BIT 1,A ; IS THERE A DATA BYTE PRESENT ?
JR Z,WAIT1 ; NO, WAIT TILL ONE COMES IN
LD A,(37EFH) ; YES, LOAD DATA BYTE
LD (HL),A ; STORE IN BUFFER
INC HL ; BUMP TO NEXT BUFF ADDR
DEC BC ; TEST FOR 256 BYTES TRANSFERRED
LD A,B ; COMBINE B AND C
OR C ; TO TEST BOTH REGISTERS
JR NZ,WAIT ; GO GET NEXT BYTE
.
.
.

DOS Exits

DOS Exits were discussed in general terms in chapter 1.
They are used as a means of passing control between
Level II BASIC and Disk BASIC.  The Exit itself is a
CALL instruction in the ROM portion of the system to a
fixed address in the Communications Region.  Contained at
that CALL'd address will be either a RETURN instruction
or a JUMP to another address in Disk BASIC.  On a Level
II system without disks these CALL'd locations are set to
RETURNS during IPL processing.   On disk based systems
they are not initialized until the BASIC command is
executed. At that time JUMPS to specific addresses within
Disk BASIC are stored at the CALL locations.

The term DOS Exit really has two different meanings.
DOS Exits are calls from ROM BASIC to Disk BASIC
while in the Input Phase, while executing a system level
command, or while executing a verb action routine.  These
exits allow extensions to be made to the routines in ROM.
The exits are not strategically located so that an entire ROM
routine could be usurped, but they are conveniently placed
for intercepting the majority of the ROM routine
processing. Another type of DOS Exit is the Disk BASIC
Exit. These exits are radically different from the other ones,
they are only entered on demand when a Disk BASIC token
is encountered during the Execution Phase.  All of the
processing associated with these tokens is contained in the
Disk BASIC program. There is no code in ROM for
executing these tokens.

The following descriptions are for DOS Exits as opposed to
Disk BASIC Exits. The calling sequence for each of the
DOS Exits vary. Before writing a program to replace any of
these Exits study the code around the CALL, paying
particular attention to register usage. What happens at the
exits is not discussed here. If it is important, disassemble
the Disk BASIC utility program and examine the code at
the BASIC address assigned to the exit. An example of how
both types of Exits can be intercepted can be found in
chapter 6.

All these addresses are for NEWDOS 2.1, TRSDOS
addresses will differ.

Level II                                   DOS Exits  BASIC
ADDRESS    DESCRIPTION                      ADDRESS  ADDRESS

19EC ..... Call to load DISK BASIC error ...... 41A6
           processing. Error number most
           be in B-register.
27FE ..... Start of USR processing ............ 41A9   5679
1A1C ..... BASIC start up. Just before ........ 41AC   5FFC
           BASIC's 'READY' message.
0368 ..... At start of keyboard input ......... 41AF   598E
1AA1 ..... Input scanner after tokenizing ..... 41B2   6033
           current statement.
1AEC ..... Input scanner after updating ....... 41B5   5BD7
           program statement table.
1AF2 ..... Input scanner after reinitial- ..... 41B8   5B8C
           izing BASIC.
1B8C/1DB0  Initializing BASIC for ............. 41BB   60A1
           new routine. During END processing.
2174 ..... During initializing of syatena ..... 41BE   577C
           output device.
032C ..... During writing to system output .... 41C1   59CD
           device.
0358 ..... When scanning keyboard. Called ..... 41C4   59CD
           from INKEY$, at end of execution
           of each BASIC statement.
1EA6 ..... At start of RUN NNN ................ 41C7   5F78
           processing.
206F ..... At beginning of PRINT .............. 41CA   51A5
           processing.
20C6 ..... During PRINT # or PRINT ............ 41CD   5B9A
           item processing.
2103 ..... When skipping to next line on ...... 41D0   5B99
           video during a BASIC output
           operation.
2108/2141  At start of PRINT on cassette ...... 41D3   5B65
           and during PRINT TAB processing.
219E ..... At beginning of INPUT processing ... 41D6   5784
222D ..... During READ processing when a ...... 41DC   5E63
           variable has been read.
2278/2278  At end of READ processing .......... 41DF   579C
2B44/2B44  From LIST processing
02B2 ..... During SYSTEM command operation .... 41E2   5B51



38

Disk BASIC Exits

These exits are made from Level II during the Execution
Phase whenever a token in the range of BC - FA is
encountered.  Tokens with those values are assigned to
statements which are executed entirely by Disk BASIC.
When a token in the given range is found control is passed
indirectly through the Verb Action Routine List (see
chapter 4) to the appropriate Disk BASIC Exit in the
Communications Region. Control is returned to Level II at
the end of the verb routine's processing.

                               CR           DISK BASIC
 TOKEN         VERB          ADDRESS         ADDRESS

  E6 .......... CVI .......... 4152 .......... 5E46
  BE .......... FN ........... 4155 .......... 558E
  E7 .......... CVS .......... 4158 .......... 5E49
  B0 .......... DEF .......... 415B .......... 5655
  E8 .......... CVD .......... 415E .......... 5E4C
  E9 .......... EOF .......... 4161 .......... 61E8
  EA .......... LOC .......... 4164 .......... 6231
  EB .......... LOF .......... 4167 .......... 6242
  EC .......... MKI$ ......... 416A .......... 5E20
  ED .......... MKS$ ......... 4160 .......... 5E30
  EE .......... MKD$ ......... 4170 .......... 5E33
  85 .......... CMD .......... 4173 .......... 56C4
  C7 .......... TIME$ ........ 4176 .......... 5714
  A2 .......... OPEN ......... 4179 .......... 6349
  A3 .......... FIELD ........ 417C .......... 60AB
  A4 .......... GET .......... 417F .......... 627C
  A5 .......... PUT .......... 4182 .......... 627B
  A6 .......... CLOSE ........ 4185 .......... 606F
  A7 .......... LOAD ......... 4188 .......... 5F7B
  A8 .......... MERGE ........ 418B .......... 60DB
  A9 .......... NAME ......... 418E .......... 6346
  AA .......... KILL ......... 4191 .......... 63C0
  NONE ........ & ............ 4194 .......... 5887
  AB .......... LSET ......... 4197 .......... 60E6
  AC .......... RSET ......... 419A .......... 60E5
  C5 .......... INSTR ........ 4190 .......... 582F
  AD .......... SAVE ......... 41A0 .......... 6044
  9C .......... LINE ......... 41AD .......... 5756
  C1 .......... USR .......... 41A9 .......... 5679

Disk Tables

The most frequently used disks on the Model I series are 5
1/4' single sided single density mini-floppy drives. A
variety of other units are available and could be used,
however some hardware and software modifications would
be necessary. Examples of other units would be: 5 1/4' dual
headed and dual density drives; 8' single and dual headed
plus single and dual density units; and various hard disks
with capacities up to 20 Mbytes.

The terms single and dual headed refer to the number of
read/write heads in a unit.  Most microcomputer systems
use single headed drives but dual headed drives are now
becoming more commonplace. A dual headed drive has
twice the capacity of a single headed unit because two disk
surfaces can be accessed rather than one.

Dual density describes the recording method used.  In
single density mode each bit cell consists of a clock pulse
followed by a data pulse while in dual density recording
clock pulses may be omitted if the data pulse is repetitious.
Using this method more sectors can be written on a track
than in single density format. The recording method used is
dictated by the controller and the software, but with dual
density drives clock pulses may be omitted and the timing
is more critical, hence not all drives can be used for dual
density.

Eight inch drives are essentially the same as 5 1/4' drives
except they usually only come in one track size (77
tracks). As with the smaller units they come in both single
and dual density. Since their radius is larger they have
more sectors per track. Track capacities for 8' drives are
typically: 26 - 128 byte sectors / track; 15 - 256 byte
sectors / track; 8 - 512 byte sectors / track; 4 - 1024 byte
sectors / track.

Track capacities for 5 1/4' single density are: 20 - 128
byte sectors / track; 10 - 256 byte sectors / track; 5 - 512
byte sectors / track; and 2 - 1024 byte sectors / track. Dual
density 5 1/4' drives have capacities of: 32 - 128 byte
sectors / track; 18 - 256 byte sectors / track; 08 - 512 byte
sectors / track; and 4 - 1024 byte sectors / track.

Hard disks are too varied to classify. Basically a hard disk
has more capacity, faster access time, higher transfer rates,
but the disk itself may not be removable. Without a
removable disk file backup can be a serious problem, a
second hard disk is an expensive solution.

Shown below is a diagram of a 5 1/4' 35 track diskette.

Each diskette has 35, 40, 77, or 80 tracks depending on the
drive used. Each track has 10 sectors of 256 bytes.
Sector sizes can vary from 2 to 1024 bytes per sector.  But
the software must be modified to handle anything other
than 256, because that is the size assumed by DOS.  The
Model I uses a semi IBM compatible sector format.  It is
not 100% compatible because track and sector numbers
on IBM diskettes are numbered from 1 not 0 as in
TRSDOS.

DOS uses a file directory to keep a record of file names
and their assigned tracks and sectors.  The directory
occupies all 10 sectors of track number 11.  It is composed
of three parts: a disk map showing available sectors (track
11, sector 1); a file name in use index that allows the



39

directory to be searched from an advanced starting point
(called the Hash Index Table track 11, sector 2); and the
directory sectors themselves (track 11 sector 3 thru track 11
sector 10).

       Track 11H  Sector 0       GAT
                                Sector

                  Sector 1       HIT
                                Sector

                  Sector 2    Directory
                                Sector

                         .
                         .

                  Sector 9    Directory
                                Sector

As well as the directory track there is one other special
area on a diskette.  Track 0 sector 0 contains a system
loader used during the disk IPL sequence to load DOS.
The loader is read into RAM locations 4200 - 4300 by
the ROM IPL code which then passes control to it so that
the DOS can be loaded.

Disk Track Format

Before any diskette can be used it must be initialized using
either the FORMAT or COPY (BACKUP if using
TRSDOS) utility programs.  Formatting initializes the
diskette which is originally magnetically erased.  The
formatting operation writes the sector addresses for every
addressable sector plus synch bytes which will be used by
the controller to aid it locating specific addresses.  In
addition the formatting operation specifies the sector size,
the number of sectors per track, and the physical order of
the sectors

Mini-floppies are usually formatted with 128,256,512, or
1024 byte sectors although other sizes may be formatted.
DOS uses the following track format:

Position    Number of Bytes    Contents

Index           14              FF
                 6              00
                 1              FE (Address marker)
                 1              Track Number
                 1              Head Number
One              1              Sector Number
Sector           1              Sector Length Code
                                   00 = 128 bytes
Ten per                            01 = 256 bytes
track.                             02 = 512 bytes
                                   03 = 1024 bytes
Sector           2              CRC
order is        11              FF : Sector 0 only, 12
0,5,1,6,         1              A0 : bytes of FF all others
2,7,3,8,         1              FA (Data Field Mark)
4,9.           256              Data
                 2              CRC
                12              FF : Except the last (9)
                 6              00 : which is followed by
                FE                   130 bytes of FF

GAT Sector (Track 11 Sector 1)

Previously we mentioned the file directory system used by
DOS. It is based in part on the ability to dynamically assign

disk space on an as-needed basis. Conversely, it must be
possible to reuse space which has been released and is no
longer needed. The basic vehicle used for keeping track of
assigned and available disk space is the Granule Allocation
Table (GAT). Obviously, GAT data must be stored outside
the machine if a permanent record is to be maintained. The
GAT sector is used for this storage.

With the disk description there was a definition for a track
and sector. These terms will now be re-defined into the
DOS term granule. A granule is 5 sectors or half of a track.
It is the minimum unit of disk space that is allocated or de-
allocated. Granules are numbered from 0 to N, where N is a
function of the number of tracks on a diskette. A record of
all granules assigned is maintained in the GAT sector.
Recalling the disk dimensions mentioned earlier we can
compute the number of granules on a diskette as:

Granule = (Number of tracks * 10) / 5

Using a 35 track drive with the default DOS disk values of
10 sectors per track and 5 sectors per granule this gives 70
granules per diskette.

The GAT sector is divided into three parts.  The first part is
the actual GAT table where a record of GAT's assigned is
maintained.  Part two contains a track lock out table, and
part three system initialization information.

    Relative
    Byte   0  -->      Granule Byte track 0

                               .
                               .

                      Granule byte track 95

           60 -->    Lockout byte for track 0

                               .
                               .

                     Lockout byte for track 95

           CE -->
                        Password (2 bytes)
           D0 -->
                        Disk Name (8 bytes)
           D8 -->
                      Creation Date (8 bytes)
           E0 -->
                          AUTO procedure
                            (32 bytes)
           F0 -->
                             Not used

    Track available  1 1 1 1 1 1 0 0
    Locked out       1 1 1 1 1 1 1 1
    Lockout byte (1 per track)

    Granule          1 1 1 1 1 1 X X
    Allocation                     .... Sectors 0 - 4
    Byte (1 per track)           :..... Sectors 5 - 9
                            0 = Assigned  1 = Available

Hash Index Table (Track 11 Sector 2)

The Hash Index is a method used to rapidly locate a file
without searching all of the directory sectors until it is
found. Each file has a unique value computed from its
name. This value is called the Hash Code. A special sector
in the directory contains the Hash Codes for all active files



40

on a diskette.  When a file is created, its Hash Code is
stored in the hash sector in a position that corresponds to
the directory for that file. Note, the hash position does not
give the file position, just its directory sector position.
When a file is KILL'd it code is removed from the hash
sector.

Files are located by first computing their hash value, the
Hash Index Sector is then searched for this value.  If it is
not found then the file does not exist. If the code is found
then its position in the Hash Index Sector is used to
compute the address for the directory sector containing the
file name entry.

Hash code values range from 01 to FF.   They are computed
from an 11 character file name that has been left justified,
blank filled. Any file name extension is the last three
characters of the name. The code used for computing a hash
value is shown below:

LD B,11 ; NO. OF CHARS TO NASH
LD C,0 ; ZERO HASH REGISTER

LOOP LD A,(DE) ; GET ONE CHAR OF NAME
INC DE ; BUMP TO NEXT CHAR
XOR C ; HASH REG. XOR. NEXT CHAR
RLCA ; 2*(NR. XOR. NC)
LD C,A ; NEW HR
DJNZ LOOP ; HASH ALL CHARS
LD A,C ; GET HASH VALUE
OR A ; DON'T ALLOW ZERO
JMP DONE ; EXIT, HASH IN A
INC A ; FORCE HASH TO 1

DONE . ; EXIT, HASH IN A

Space for codes in the Hash Sector is assigned sequen-
tially beginning at an arbitrary point. If the hash sector is
full a DOS error code of 1A is given otherwise the sector is
scanned in a circular manner until the first available (zero)
entry is found.

Not all words in the Hash Sector are used.  Addresses in the
range 10 - 1F, 30 - 3F, 50 - 5F are excluded.  Only those
addresses ending in the digits 00-07, 20-27 etc are assigned.
This speeds the computation of the directory sector number
from the hash code value address. The Hash Sector is
shown below.

Relative
Byte         00 -->     Zero or Hash code

             01 -->            .
                                                HASH codes for
             02 -->            .                files in sector
                                                2 of directory
                               .                track
             07 -->            .

             10 -->         Not Used

             1F -->
                                                HASH codes for
             20 -->            .                files in sector
                               .                3 of directory
                                                track
             27 -->

             30 -->        Not Used

             37 -->

                                                Sector 4
             F0 -->
                            Not Used
             FF -->

Disk DCB

Each disk file has associated with it a 32 byte DCB which is
defined in the user's memory space.  When the file is
opened the DCB must contain the file name, a name
extension if any, and an optional drive specification.  As
part of the OPEN processing the DCB is initialized for
READ and WRITE operations by copying portions of the
directory entry into the DCB. After initialization the DCB
appears as shown.

Relative Byte 0                          Open flag
              1                          Access flags
              3                          Reserved
              4                          Sector buffer addr
              5
              6                          Next record addr
              7                          Drive number
              8                          Overflow pointer
              9                          EOF address
              A                          Record size
              B                          Next record #
              C
              D                          Number of records
              E                            1st
              F                            GAP
             10                          Total granules
             11                          thru 1st GAP
             12                            2nd
             13                            GAP
             14                          Total granules
             15                          thru 2nd GAP
             16                            3rd
             17                            GAP
             18                          Total granules
             19                          thru 3rd GAP
             1A                            4th
             1B                            GAP
             1C                          Total granules
             1D                          thru 4th GAP
             1E                          End of GAP
             1F                          Flag

where

BYTE   0   bits 0-6 : reserved
            bit 7   : 0 = file not opened
                      1 = file opened

BYTE   1   bits 0-2 : access permission flag.
            bit  3  : reserved
            bit  4  : 0 = sector buffer available
                      1 = flush sector buffer before using
            bit   5 : 0 = look for record in current buffer
                      1 = unconditionally read next sector
            bit   6 : reserved
            bit   7 : 0 = sector I/O
                      1 = logical record I/O

BYTE   2      reserved
BYTE   3 - 4  sector buffer address in LSB/MSB order
BYTE   5      pointer to next record in buffer
BYTE   6      drive number
BYTE   7      bits 0-3  sector number - 2 of  overflow entry
              bits 3-4  reserved
              bits 5-7  offset/16 to primary entry in directory
BYTE   8      pointer to end of file in last sector
BYTE   9      record size
BYTE  10 - 11 next record number in LSB/MSB format
BYTE  12 - 13 number of records in file
BYTE  14 - 15 first GAP
BYTE  16 - 17 total granules assigned thru first
BYTE  18 - 19 second GAP
BYTE  20 - 21 total granules assigned thru second GAP
BYTE  22 - 23 third GAP
BYTE  24 - 25 total granules assigned thru third GAP
BYTE  26 - 27 fourth GAP
BYTE  28 - 29 total granules assigned thru fourth GAP
BYTE  30 - 31 end of GAP string flag (FFFF)



41

Directory Sector (Track 11 Sector 3 -
Track 11 Sector 9)

Directory sectors contain file descriptions used when
accessing a disk file.  These descriptions contain among
other things the file name, passwords, and a list of the disk
addresses occupied by the file.  The directory sectors are
divided into eight fixed-length partitions of thirty two bytes
each.  Each partition contains one file description.  Empty
partitions are indicated by a flag in the first byte of the
partition.

Space in the directory is assigned when a file is initially
created using a DOS OPEN or INIT call.  There is no
particular order in the way space is assigned because the
directory sector number used is determined by a hash code
derived from the file name. Partition space in the sector is
assigned in sequential order.

Relative
Byte        0    Entry # 1

           20  -------------
                 Entry # 2
               -------------

           E0  -------------
                 Entry # 8

Relative Byte 0                          Access control
              1                          Overflow
              3                          Reserved
              4                          EOF byte offset
              5                          Record length
              6                          File name
              7                            .
              8                            .
              9                            .
              A                            .
              B                            .
              C                            .
              D                            .
              E                          Name Extension
              F                            .
             10                            .
             11                          Update password
             12                            .
             13                          Access password
             14                          EOF sector
             15                          Track
             16                          Number of  GAP1
             17                          Granules
             18                             .   GAP2
             19                             .
             1A                             .      .
             1B                             .      .
             1C                             .      .
             1D                             .      .
             1E                             .       GAP5
             1F                             .

BYTE 0    bits 0-2 = file access control flags
         000 - unrestricted access
         001 - KILL/RENAME/WRITE/READ/EXECUTE access
         010 - RENAME/WRITE/READ/EXECUTE access
         011 - reserved
         100 - WRITE/READ/EXECUTE access
         101 - READ/EXECUTE access
         110 - EXECUTE access only
         111 - restricted file no access

         bit3 = 0, file is displayable. 1, file is invisible.
         bit4 = 0, this entry is available. 1, entry is used.
         bit5 = reserved
         bit6 = 0, user file. 1, SYSTEM file.
         bit7 = 0, primary entry. 1, overflow entry.

BYTE  1  used for overflow entries only.
         Bits 0 - 3 byte offset/10 in primary sector to the entry
                  for this file
         Bits 4 - 7 sector number - 2 of primary entry.
BYTE   2  Reserved
BYTE   3  Bits 0 - 7    byte offset to end of file in last sector.
BYTE   4  Bits 0 - 7    record length.

BYTES  5 - 12  File name in ASCII, left justified, blank filled.
BYTES 13 - 15 File name extension in ASCII left justified, blank filled.
BYTES 16 - 17 Update password (encoded).
BYTES 18 - 19 Access password (encoded).
BYTES 20 - 21 Last sector number in file. LSB/MSB order.
BYTES 22 - 31 Five two-byte entries called Granule Assignment
              Pairs (GAPs). Each GAP consists of a starting track number
              (byte 1) and a count of the number of  consecutively
              assigned granules (byte 2). A string of these GAP's in
              proper order define the disk addresses assigned
              to a file. The end of a GAP string will be signaled by
              a FF in bytes 1 and 2 if there are no more than five
              GAP assigned, or an FE followed by the disk address of
              another directory sector containing the remainder of
              the GAP's. The directory entry containing the overflow
              GAP's is called an overflow entry and contains only the
              continuation of the GAP string. There is no limit to the
              number of overflow entries that may be assigned.
              GAP bytes are formatted as shown below

1st Byte: Bits 0 - 7 contain one of the following:
   a) If the contents of 1st byte is less than FE it is assumed
      to be a track number.
   b) An FF if there are no more GAP's. This is the end of a GAP string
   c) An FE if there are more GAP entries in an overflow sector.
      The next byte contains the overflow sector address.

2nd Byte: The interpretation of this byte depends on the contents of
   the preceding byte. If = FF, then this byte is not contains an FF.
   If preceding byte = FE, then:
   holds in bits  0 - 3 the sector number - 2 of overflow sector.
   bits  4 - 7 the byte offset/10 in the overflow sector to the
   entry with the remainder of the GAPs'.
   If preceding byte < FE, then this byte has in bits 0 - 3 the number
of
   consecutive granules minus 1. This value varies from 0 up to 1F.
   Bit 4 = a flag indicating whether the first or second granule in
   the starting track has been assigned. If bit 4 = 0, then the
   first granule was assigned. if bit 4 = 1, then the second granule
   starts with sector.
5) was assigned.

  Following is an example of a GAP string:

      byte 22:  23     file starts on track 23
      byte 23:  06     there are 7 granules assigned
                       TRK (23) S(0-9), TRK (24) S(0-9)
                       TRK (25) S(0-9), TRK (26) S(0-4)

  -----------------------------------------------------------
      byte 24:  15     file continues on track 15
      byte 25:  23     for 4 granules
                       TRK (15) S(5-9), TRK (16) S(0-9)
                       TRK (17) S(0-4)

  -----------------------------------------------------------
      byte 26: FF   end of GAP string
      byte 27: FF   end of GAP string



42

Chapter 4

Addresses & Tables

   Address
    (Hex)

0000 -->

                     Level II ROM
                  (Internal Tables)

3C00 -->       - - - - - - - - - - - -
                    I/O Addresses
4000 -->       - - - - - - - - - - - -

                   Communications
                       Region
                  (External Tables)

4200           -----------------------
                    DOS Nucleus
5200           -----------------------
                     Disk BASIC
6700           -----------------------
                      Program
                     Statement
                      Table
               -----------------------

                 Variables List Table
                  Simple Variables
               - - - - - - - - - - - -
                Subscripted Variables
               -----------------------
                     Free Space

               -----------------------
                        Stack
               -----------------------
                     String Area

Level II Internal Tables

Internal tables are those lists and tables that are resident in
the Level II system. Since they are ROM resident their
contents and address are fixed. They are used by BASIC for
syntax analysis, during expression evaluation, for data
conversions, and while executing such statements as FOR
and IF.

Reserved Word List (1650 - 1821)

This table contains all of the word reserved for use by the
BASIC interpreter.  Each entry contains a reserved word
with bit 8 turned on. During the Input Phase the incoming
line is scanned for words in this list.  Any occurrence of one
is replaced by a token representing it.  The token is
computed as 80 plus the index into the table where the word
was found.  A list of those words and their token values
follows:

 Word      Token    Word   Token    Word   Token

 END..........80    FOR.......81    RESET.....82
 SET..........83    CLS.......84   *CMD.......85
 RANDOM.......86    NEXT......87    DATA......88
 INPUT........89    DIM.......8A    READ......8B
 LET..........8C    GOTO......8D    RUN.......8E
 IF...........8F    RESTORE...90    GOSUB.....91
 RETURN.......92    REM.......93    STOP......94
 ELSE.........95    TRON......96    TROFF.....97
 DEFSTR.......98    DEFINT....99    DEFSNG....9A
 DEFDBL.......9B   *LINE......9C    EDIT......9D
 ERROR........9E    RESUM.....9F    OUT.......A0
 ON...........A1   *OPEN......A2   *FIELD.....A3
*GET..........A4   *PUT.......A5   *CLOSE.....A6
*LOAD.........A7   *MERGE.....A8   *NAME......A9
*KILL.........AA   *LSET......AB   *RSET......AC
*SAVE.........AD    SYSTEM....AE    LPRINT....AF
*DEF..........B0    POKE......B1    PRINT.....B2
 CONT.........B3    LIST......B4    LLIST.....B5
 DELETE.......B6    AUTO......B7    CLEAR.....B8
 CLOAD........B9    CSAVE.....BA    NEW.......BB
 TAB(.........BC    TO........BD   *FN........BE
 USING........BF    VARPTR....C0    USR.......C1
 ERL..........C2    ERR.......C3    STRING$...C4
 INSTR........C5    POINT.....C6   *TIMES.....C7
 MEM..........C8    INKEY$....C9    THEN......CA
 NOT..........CB    STEP......CC    +.........CD
 -............CE    *.........CF    /.........D0
 UP ARROW.....D1    AND.......D2    OR........D3
 >............D4    =.........D5    <.........D6
 SGN..........D7    INT.......D8    ABS.......D9
 FRE..........DA    INP.......DB    POS.......DC
 SQR..........DD    RND.......DE    LOG.......DF
 EXP..........E0    COS.......E1    SIN.......E2
 TAN..........E3    ATN.......E4    PEEK......E5
*CVI..........E6   *CVS.......E7   *CVD.......E8
*EOF..........E9   *LOC.......EA   *LOF.......EB
*MKI$.........EC   *MKS$......ED    CINT......EF
 CSNG.........F0    CDBL......F1    FIX.......F2
 LEN..........F3    STR$......F4    VAL.......F5
 ASC..........F6    CHR$......F7    LEFT$.....F8
 RIGHT$.......F9   *MID$......FA    '.........FB

* Disk BASIC tokens



43

Precedence Operator Values (189A - 18A0)

This table contains numeric values used to determine the
order of arithmetic operations when evaluating an
expression.  As the expression is scanned each operator/
operand pair plus the precedence value for the previous
operand is stored on the stack. When an operator of higher
precedence than the preceding one is found the current
operation is performed giving an intermediate value that is
carried forward on the stack.  The values shown for
relational operations are computed rather than being
derived from a table look-up.

Operator Function Precedence Value

UP ARROW (Exponent) 7F
* (Multiplication) 7C
/ (Division) 7C
+ (Addition) 79
- (Subtraction) 79
ANY (Relational) 64
AND (Logical) 50
OR (Logical) 46
<= (Relational) 06
<> (Relational) 05
>= (Relational) 03
< (Relational) 04
= (Relational) 02
> (Relational) 01

Arithmetic Routines (18AB - 18C8)

There are really three tables back-to-back here.  They are
used during expression evaluation to compute inter-
mediate values when a higher precedence operator is found.

Arithmetic Routine Addresses

Single Double
Integer Precision Precision String

Addition 0BD2 0716 0C77 298F
Subtraction 0BC7 0713 0C70 NONE
Multiplication 0BF2 0847 0DA1 NONE
Division 2490 08A2 0DE5 NONE
Comparison 0A39 0A0C 0A78 NONE

Data Conversion Routines (18A1 - 18AA)

These routines convert the value in WRA1 from one mode
to another. They are called by the expression evaluator
when an intermediate computation has been made, and the
result needs to be make compatible with the rest of the
expression.

Conversion Routine Addresses

Destination Mode Address

String 0AF4
Integer 0A7F
Single Precision 0AB1
Double Precision 0ADB
   Verb Action Addresses

Verb Action Routines (1822 - 1899)

There are two Verb Action Address Lists.  The first one is
used by the execution driver when beginning execution of a
new statement.  It contains address of verb routines for the
tokens 80 - BB. The first token of the statement is used as
an index in the range of 0 - 60 into the table at 1822 - 1899
to find the address of the verb routine to be executed. If the
statement does not begin with a token control goes to
assignment statement processing. The second table contains
the addresses of verb routines which can only occur on the
right side of an equals sign. If during the expression
evaluation stage a token in the range of D7 - FA is
encountered it is used as an index into the table at 1608 -
164F, where the address of the verb routine to be executed
is found. There is no address list for the tokens BC - D6
because they are associated with and follow other tokens
that expect and process them.

Table Address  1B22 - 1B99)

Token   Verb     Address   Token  Verb      Address

80....END.......1DAE      81....FOR........1CA1
82....RESET.....0138      83....SET........0135
84....CLS.......01C9      85....CMD........4135
86....RANDOM....01D3      87....NEXT.......22B6
88....DATA......1F05      89....INPUT......219A
8A....DIM.......2608      8B....READ.......21EF
8C....LET.......1F21      8D....GOTO.......1EC2
8E....RUN.......1EA3      8F....IF.........2039
90....RESTORE...1D91      91....GOSUB......1EB1
92....RETURN....1EDE      93....REM........1F07
94....STOP......1DA9      95....ELSE.......1F07
96....TRON......1DF7      97....TROFF......1DF8
98....DEFSTR....1E00      99....DEFINT.....1E03
9A....DEFSNG....1E06      9B....DEFDBL.....1E09
9C....LINE......41A3      9D....EDIT.......2E60
9E....ERROR.....1FF4      9F....RESUME.....1FAF
A0....OUT.......2AFB      A1....ON.........1FC6
A2....OPEN......4179      A3....FIELD......417C
A4....GET.......417F      A5....PUT........4182
A6....CLOSE.....4185      A7....LOAD.......4188
A8....MERGE.....418B      A9....NAME.......418E
AA....KILL......4191      AB....LSET.......4197
AC....RSET......419A      AD....SAVE.......41A0
AE....SYSTEM....02B2      AF....LPRINT.....2067
B0....DEF.......41B5      B1....POKE.......2CB1
B2....PRINT.....206F      B3....CONT.......1DE4
B4....LIST......2B2E      B5....LLIST......2B29
B6....DELETE....2BC6      B7....AUTO.......2008
B8....CLEAR.....1E7A      B9....CLOAD......2C1F
BA....CSAVE.....2BF5      BB....NEW........1B49

(Table Address  16DB - 164F)

TOKEN   VERB     Address   TOKEN  VERB     Address

D7....SGN.......098A      D8....INT........0B37
D9....ABS.......0977      DA....FRE........27D4
DB....INP.......2AEF      DC....POS........27A5
DD....SQR.......13E7      DE....RND........14C9
DF....LOG.......0809      E0....EXP........1439
E1....COS.......1541      E2....SIN........1547
E3....TAN.......15A8      E4....ATN........15BD
ES....PEEK......2CAA      E6....CVI........4152
E7....CVS.......4158      E8....CVD........415E
E9....EOF.......4161      EA....LOC........4164
EB....LOF.......4167      EC....MKI$.......416A
ED....MKS$......416D      EE....MKD$.......4170
EF....CINT......0A7F      F0....CSNG.......0AB1
F1....CDBL......0DAB      F2....FIX........0B26
F3....LEN.......2A03      F4....STR$.......2836
F5....VAL.......2AC5      F6....ASC........2A0F
F7....CHR$......2A1F      F8....LEFT$......2A61
F9....RIGHT$....2A91      FA....MID$.......2A9A



44

Error Code Table (18C9- 18F6)

Error codes printed under Level II are interpreted by
using the error number as in index into a table of two letter
error abbreviations. The format of the error code table is
as follows:

Error    Code           Cause                    Originating
Number                                             Address

 0 NF NEXT WITHOUT FOR 22C2
 2 SN SYNTAX ERROR (NUMEROUS DA,2C7,EEF

CAUSES) 1C9E,1D32,1E0E
1E66,2022,235B
2615,2AE9,2DE2

 4 RG RETURN WITHOUT GOSUB 1EEC
 6 OD OUT OF DATA (READ) 2214,22A2
 8 FC NUMEROUS 1E4C
 A OV NUMERIC OVERFLOW 7B2
 C OM OUT OF MEMORY 197C
 E UL MISSING LINE NUMBER 1EDB
10 BS INDEX TOO LARGE 273F
12 DD DOUBLY DEFINED SYMBOL 2735
14 0/ DIVISION BY 0 8A5,DE9,1401
16 ID INPUT USE INCORRECT 2833
18 TM VARIABLE NOT A STRING AF8
1A OS OUT OF STRING SPACE 28DD
1C LS STRING TOO LONG 29A5
1E ST LITERAL STRING POOL 28A3

TABLE FULL
20 CN CONTINUE NOT ALLOWED 1DEB
22 NR RESUME NOT ALLOWED 198C
24 UE INVALID ERROR CODE 2005
26 UE INVALID ERROR CODE 2005
28 MO OPERAND MISSING 24A2
2A FD DATA ERROR ON CASSETTE 218C
2C L3 DISK BASIC STATEMENT 12DF

ATTEMPTED UNDER LEVEL II

Level II External Tables

External tables used by Level II are those which are kept in
RAM. They are kept there because their contents and size,
as well as their address, may change. A pointer to each of
the External tables is maintained in the Communications
Region.

Mode Table (4101-411A)

This table is used by the BASIC interpreter to determine the
data type mode (integer, string, single or double precision)
for each variable.  Although it never moves its contents
may change when a DEF declaration is encountered, and
therefore it must be in RAM.  It is the only RAM table with
a fixed address and consequently there is no pointer to it in
the Communications Region.  The table is 26 decimal
words long and is indexed by using the first character of a
variable name as an index.  Each entry in the table contains
a code indicating the variable type e.g. 02 - integer, 03 -
string, 04 - single precision, 08 - double precision.

The mode table is initialized during the IPL sequence to 04
for all variables. It appears as:

Address    Letter    Type  Address     Letter    Type

  4101.......A........04     4102........B........04
  4103.......C........04     4104........D........04
  4105.......E........04     4106........F........04
  4107.......G........04     4108........H........04
  4109.......I........04     410A........J........04
  410B.......K........04     410C........L........04
  410D.......N........04     410E........N........04
  410F.......0........04     4110........P........04
  4111.......Q........04     4112........K........04
  4113.......S........D4     4114........T........04
  4115.......U........04     4116........V........04
  4117.......W........04     4118........X........04
  4119.......Y........04     411A........Z........04

Program Statement Table (PST)

The Program Statement Table contains BASIC statements
entered as a program. Since it is RAM resident and its
origin may change from system to system there is a pointer
to it in the Communications Region at address 40A4.  As
each line is entered it is tokenized and stored in the PST.
Statements are stored in ascending order by line number
regardless of the order in which they are entered. Each
entry begins with a two byte pointer to the next line
followed by a two byte integer equivalent of the line
number then the text of the BASIC statement.  The body of
the statement is terminated with a single byte of zeros
called the End Of Statement or EOS flag.  The ending
address of the PST is contained in 40F9.   It is terminated
by two bytes of zeros.

Program Statement Table (PST)

   40A4 -->                              2 Byte addr of
                                         next statement
                                         2 byte line number
                                         in integer form

                                         BASIC statement
                                         in Tokenized
                                         form

                                         EOS Flag
                                         2 byte addr of
                                         next statement

                                         2 byte line number
                                         in integer form

                                         BASIC statement
                                         in Tokenized
                                         form

                                         EOS Flag
                                         2 byte addr of
                                         next statement

Shown below are two statements and their representation
in the PST:

100 A = COS (1.6)
110 IF A>.5 THEN 500



45

Variable List Table (VLT)

This table contains all variables assigned to a BASIC
program.  Internally the table is divided into two sections.
Section one contains entries for all non-subscripted and
string variables while section two contains the values for all
subscripted variables.  Like the PST the VLT is RAM
resident and it has two pointers in the Communications
Region.  Location 40F9 contains the address of the first
section, and 40FB contains the address of section two.  The
starting address of the VLT is considered as the end of the
PST.

Regardless of which section a variable is defined in, the
first three bytes of each entry have the same format.  Byte
one has a type code (2,3,4 or 8), which doubles as the
length of the entry.  Bytes two and three contain the
variable name in last/first character order.  Following this is
the value itself in LSB/MSB order, or if it as a string
variable a pointer to the string in the String Area.

Section two contains all dimensioned arrays.  These entries
have the same three byte header followed by a another
header which defines the extents of the array.  The array is
stored after the second header in column-major order.

Variables are assigned space in the VLT as they are
encountered (in a DIM statement or in any part of an
assignment statement).  There is no alphabetical ordering.
Because space is assigned on demand it is possible for
previously defined variables to be moved down.  For
example, if A, B, and C(5) were defined followed by D,
C(5) would be moved down because section one would be
increased for D.  This would force section two to be moved.

(40F9) -->       Simple &
                  String
                 Variables

(40FB) -->      Dimensioned
                 Variables

Arrays are stored in column-major order.  In that order the
left most index varies the fastest.  For example the array
A(2,3) would be stored in memory as:

A(0,0)
A(1,0)
A(2,0)

.

.

.
A(0,3)
A(1,3)
A(2,3)

An index for any element can be computed using the
formula:

INDEX = (((LRI*0)+URI)*LMI)+UMI)*LLI)+ULI

where

LRI = limit of right index
LMI = limit of middle index
LLI = limit of left index

URI = user's current right index
UMI = user's current middle index
ULI = user's current left index

The code used to compute these indexes may be found at
address 2595 to 27C8.



46

Literal String Pool (40D2)

This table is used by BASIC to keep track of intermediate
strings which result from operations such as string
addition or some print operations.  The table has eleven
three byte entries which are assigned sequentially.  The start
of the table has a two byte pointer to the next available
entry.  It is initialized during IPL to point to the head of the
list.

Each entry contains the length and the address of a string
which is usually (although not necessarily) in the PST.
Entries are assigned in a top down fashion and released in a
bottom up manner.  A pointer to the next available entry is
kept in 40B3.  If the table overflows an ST error is given.

     (40B3) -->                          Address of next
                                         available entry
                                         String length
                                         Address of
                                         String

      FFCC -->

                 Literal String Pool

Communications  Region (4000 - 4200)

The Communications Region has been defined as RAM
locations 4000 to 4200.  These addresses give the definition
an air of precision that is not warranted.  In reality only a
portion of the area is used in the sense given to the term
Communications Region.  Those boundaries were chosen
because they represent the end of ROM and the
approximate starting address of DOS in RAM. In a Level II
system without disk there would be no DOS and the RAM
tables such as the PST, VLT, etc. would begin at a much
lower address.  But they would still be above 4200 so it is
safe to think of that region as reserved.

The Communications Region has many uses other than
those mentioned so far.  The following diagram shows the
major areas discussed up to this point. Following it is a
description of all bytes in the Communications Region and
their known use.

Communications Region

4000 -->
                  RST Vectors
4015 -->  ----------------------------
                     DCB's
4040 -->  ----------------------------
               Used By DOS
4080 -->  ----------------------------
            Division Support Routine
408E -->  ----------------------------
                  Used by
                  Level II
4101 -->  ----------------------------
                 Mode Table
411B -->  ----------------------------
                  Used by
                  Level II
4130 -->  ----------------------------
             System Print Buffer
414A -->  ----------------------------
              Used by Level II
4152 -->  ----------------------------
                 Disk BASIC
                  Vectors
41A3 -->  ----------------------------
                  DOS Exit
                  Vectors
41E5 -->  ----------------------------

4200 -->

Address Level II    DOS       Description
        Contents   Contents

4000    JP 1C96      ....     RST  8   VECTOR
4003    JP 1D78      ....     RST  10  VECTOR
4006    JP 1C90      ....     RST  18  VECTOR
4009    JP 25D9      ....     RST  20  VECTOR
400C    RET         JP 4BA2   RST  28  DOS REQUEST PROCESSING
400F    RET         JP 44B4   LOAD DEBUG (LD  A,XX/RST 28)
4012    DI/RET      CALL 4518 RST  38  INTERRUPT SERVICE CALL
4015    ..................... KEYBOARD DCB (8 BYTES)
401D    ..................... VIDEO DCB (8 BYTES)
4025    ..................... PRINTER DCB (8 BYTES)
402D    JP   5000   JP  4400  MAKE SYS1 (10) DOS REQUEST
4030    RST  0      LD  A,A3  DOS REQUEST CODE FOR SYS1
4032    LD   A,0    RST  28   WRITE 'DOS READY' MSG
4033    RET         JP  44BB  CALL DEVICE DRIVER ALA DOS
4036    ..................... KEYBOARD WORK AREA USED
 .                            BY SYS0 AND KEYBOARD DRIVER
403D    ..................... DISPLAY CONTROL WORD (U/L CASE)
403E    ..................... USED BY DOS
403F    ..................... USED BY DOS
4040    ..................... SYSTEM BST'S
4041    ..................... SECONDS
4042    ..................... MINUTES
4043    ..................... HOURS
4044    ..................... YEAR
4045    ..................... DAY
4046    ..................... MONTH
4047    ..................... LOAD ADDRESS FOR SYSTEM UTILITIES
                              2 BYTES, INITIALIZED TO 5200 BY
                              SYS0/SYS
4049    ..................... MEMORY SIZE. COMPUTED BY SYS0/SYS
404A    ..................... RESERVED
4048    ..................... CURRENT INTERRUPT STATUS WORD
404C    ..................... INTERRUPT SUBROUTINE MASK
404D    ..................... RESERVED (INTERRUPT BIT 0)
404F    ..................... RESERVED (INTERRUPT BIT 1)
4051    ..................... COMMUNICATIONS
                              INTERRUPT SUBROUTINE
4053    ..................... RESERVED (INTERRUPT BIT 3)
4055    ..................... RESERVED (INTERRUPT BIT 4)
4057    ..................... RESERVED (INTERRUPT BIT 5)
4059                    45F7  ADDR OF DISK INTERRUPT ROUTINE
4058                    4560  ADDR OF CLOCK INTERRUPT ROUTINE
4050    ..................... STACK DURING IPL
4070    ..................... START OF STACK DURING ROM IPL
407E    ..................... RESERVED
407F    ..................... RESERVED
4080    ..................... SUBTRACTION ROUTINE USED BY
                              DIVISION CODE. CODE IS MOVED
                              FROM '18F7' - '1904' DURING
                              NON-DISK IPL OR BY BASIC
                              UTILITY FOR DISK SYSTEMS



47

408E    ..................... CONTAINS ADDRESS OF USER SUBROUTINE
4090    ..................... RANDOM NUMBER SEED
4093    ..................... IN A,00
4096    ..................... OUT A,00
4099    ..................... HOLDS LAST CHAR TYPED AFTER BREAK
409A    ..................... FLAG (SIGNALS RESUME ENTERED)
409B    ..................... NO. OF CHARS. IN CURRENT PRINT LINE
409D    ..................... OUTPUT DEVICE CODE (1-PRINTER
                              0-VIDEO, MINUS 1-CASSETTE)
409D    ..................... SIZE OF DISPLAY LINE  (VIDEO)
409E    ..................... SIZE OF PRINT LINE
409F    ..................... RESERVED
40A0    ..................... ADDR  OF STRING AREA BOUNDARY
40A1    ..................... CURRENT LINE NUMBER
40A4    ..................... ADDR OF PST
40A5    ..................... CURSOR POSITION
40A7    ..................... ADDR  OF KEYBOARD BUFFER.
40A9    ..................... 0 IF CASSETTE INPUT, ELSE NON-ZERO
40AA    ..................... RANDOM NUMBER SEED
40AB    ..................... VALUE FROM REFRESH REGISTER
40AC    ..................... LAST RANDOM NUMBER (2 BYTES)
40AE    ..................... FLAG: 0 - LOCATE NAMED VARIABLE
                                   -1 - CREATE ENTRY FOR
                                        NAMED VARIABLE
40AF    ..................... TYPE FLAG FOR VALUE IN WRA1.
                               2 - INTEGER
                               3 - STRING
                               4 - SINGLE PRECISION
                               8 DOUBLE PRECISION
40B0    ..................... HOLDS INTERMEDIATE VALUE DURING
                              EXPRESSION EVA
40B1    ..................... MEMORY SIZE
40B2    ..................... RESERVED
40B3    ..................... ADDR  OF NEXT AVAILABLE LOC. IN LSPT.
40B5    ..................... LSPT (LITERAL STRING POOL TABLE)
40D2    ..................... END OF LSPT
4003    ..................... THE NEXT 3 BYTES ARE USED TO HOLD
                              THE LENGTH AND ADDR OF A STRING WHEN
                              IT IS MOVED TO THE STRING AREA.
40D6    ..................... POINTER TO NEXT AVAILABLE
                              LOC. IN STRING AREA
40D8    ..................... 1: INDEX OF LAST BYTE EXECUTED IN
                                 CURRENT STATEMENT.
                              2: EDIT FLAG DURING PRINT USING
40DA    ..................... LINE NO. OF LAST DATA STATEMENT
40DC    ..................... FOR FLAG (1 = FOR IN PROGRESS
                              0 = NO FOR IN PROGRESS)
40DD    ..................... 0 DURING INPUT PHASE, ZERO OTHERWISE
40DE    ..................... READ FLAG: 0 = READ STATEMENT ACTIVE
                              1 = INPUT STATEMENT ACTIVE
                              ALSO USED IN PRINT USING TO HOLD
                              SEPARATOR BETWEEN STRING AND VARIABLE
40DF    ..................... HOLDS EXECUTION ADDR FOR PGM LOADED
                              WITH DOS REQUEST
40E1    ..................... AUTO INCREMENT FLAG  0 = NO AUTO MODE
                              NON-ZERO HOLDS NEXT LINE
40E2    ..................... CURRENT LINE NUMBER IN BINARY
                              (DURING INPUT PHASE)
40E4    ..................... AUTO LINE INCREMENT
40E6    ..................... DURING INPUT: ADDR OF  CODE STRING
                              FOR CURRENT STATEMENT.
                              DURING EXECUTION: LINE NO. FOR CURRENT
                              STATEMENT
40E8    ..................... DURING EXECUTION: HOLDS STACK POINTER
                              VALUE WHEN STATEMENT EXECUTION BEGINS
40EA    ..................... LINE NO. IN WHICH ERROR OCCURRED
40EC    ..................... LINE NO. IN WHICH ERROR OCCURRED
40ED    ..................... LAST BYTE EXECUTED IN CURRENT STATEMENT
40EF    ..................... ADDR OF POSITION IN ERROR LINE
40F0    ..................... ON ERROR ADDRESS
40F2    ..................... FLAG. FF DURING ON ERROR PROCESSING
                              CLEARED BY RESUME ROUTINE
40F3    ..................... ADDR OF DECIMAL POINT IN PBUFF
40F5    ..................... LAST LINE NUMBER EXECUTED
                              SAVED BY STOP/END
40F7    ..................... ADDR OF LAST BYTE EXECUTED DURING
                              ERROR
40F9    ..................... ADDR OF SIMPLE VARIABLES
40FB    ..................... ADDR OF DIMENSIONED VARIABLES
40FD    ..................... STARTING ADDRESS OF FREE SPACE LIST
40FF    ..................... POINTS TO BYTE FOLLOWING LAST CHAR
                              READ DURING READ STMNT PROCESSING
4101    ..................... VARIABLE DECLARATION LIST. THERE
                              ARE 26 ENTRIES ( 1 FOR EACH LETTER
                              OF THE ALPHABET) EACH ENTRY CONTAINS
                              A CODE INDICATING DEFAULT MODE FOR
                              VARIABLES STARTING WITH THAT LETTER
411A    ..................... END OF DECLARATION LIST
411B    ..................... TRACE FLAG (0 = NO TRACE,
                              NON-ZERO = TRACE)

411C    ..................... TEMP STORAGE USED BY NUMERIC ROUTINES
                              WHEN UNPACKING A FLOATING POINT
                              NUMBER. USUALLY IT HOLDS THE LAST
                              BYTE SHIFTED OUT OF THE LSB POSITION
411D    ..................... WRA1 - LSB OF DBL PREC. VALUE
411E    ..................... WRA1 -  DBL PREC. VALUE
415F    ..................... WRA1 -  DBL PREC VALUE
4120    ..................... WRA1 -  DBL PREC VALUE
4121    ..................... WRA1 - LSB OF INTEGER SINGLE PREC
4122    ..................... WRA1
4123    ..................... WRA1 - MSB FOR SINGLE PREC
4124    ..................... WRA1 - EXPONENT FOR SINGLE PREC
4125    ..................... SIGN OF RESULT DURING MATH &
                              ARITHMETIC OPERATIONS
4126    ..................... BIT  BUCKET USED DURING DP ADDITION
4127    ..................... WRA2 - LSB
4128    ..................... WRA2
4129    ..................... WRA2
412A    ..................... WRA2
422B    ..................... WRA2
412C    ..................... WRA2
412D    ..................... WRA2 - MSB
412E    ..................... WRA2 - EXPONENT
412F    ..................... NOT  USED
4130    ..................... START OF INTERNAL PRINT BUFFER
                              USED DURING PRINT PROCESSING
4149    ..................... LAST BYTE OF PRINT BUFFER
414A    ..................... TEMP. STORAGE USED BY DBL PRECISION
                              DIVISION ROUTINE. HOLDS DIVISOR
4151    ..................... END OF TEMP AREA

*
* LOCATIONS 4152 THRU 41E2 CONTAIN DOS EXITS AND DISK BASIC EXITS. ON
* NON-DISK SYSTEMS THESE LOCATIONS ARE INITIALIZED TO RETURNS (RET'S)
* WHILE ON DISK BASED SYSTEMS THEY WILL BE INITIALIZED AS SHOWN.
*

4152    ...RET..JP 5E46 ..... DISK BASIC EXIT (CVI)
4155    ...RET..JP 558E ..... DISK BASIC EXIT (FN)
4158    ...RET..JP 5E49 ..... DISK BASIC EXIT (CVS)
415E    ...RET..JP 5655 ..... DISK BASIC EXIT (DEF)
415K    ...RET..JP 5E4C ..... DISK BASIC EXIT (CVD)
4161    .. RET..JP 61EB ..... DISK BASIC EXIT (EOF)
4164    ...RET..JP 6231 ..... DISK BASIC EXIT (LOC)
4167    ...RET..JP 6242 ..... DISK BASIC EXIT (LOF)
416A    ...RET..JP 5E20 ..... DISK BASIC EXIT (MKI$)
4160    ...RET..JP 5E30 ..... DISK BASIC EXIT (MKS$)
4170    ...RET..JP 5E33 ..... DISK BASIC EXIT (MKD$)
4173    ...RET..JP 56C4 ..... DISK BASIC EXIT (CMD)
4176    ...RET..JP 5714 ..... DISK BASIC EXIT (TIME$)
4179    ...RET..JP 6349 ..... DISK BASIC EXIT (OPEN)
417C    ...RET..JP 60AB ..... DISK BASIC EXIT (FIELD)
417F    ...RET..JP 627C ..... DISK BASIC EXIT (GET)
4182    ...RET..JP 627B ..... DISK BASIC EXIT (PUT)
4185    ...RET..JP 606F ..... DISK BASIC EXIT (CLOSE)
4188    ...RET..JP 5F7B ..... DISK BASIC EXIT (LOAD)
418B    ...RET..JP 600B ..... DISK BASIC EXIT (MERGE)
418E    ...RET..JP 6346 ..... DISK BASIC EXIT (NAME)
4191    ...RET..JP 63C0 ..... DISK BASIC EXIT (KILL)
4194    ...RET..JP 58B7 ..... DISK BASIC EXIT (&)
4197    ...RET..JP 60E6 ..... DISK BASIC EXIT (LIST)
419A    ...RET..JP 60E5 ..... DISK BASIC EXIT (RSET)
419D    ...RET..JP 582F ..... DISK BASIC EXIT (INSTR)
41A0    ...RET..JP 6044 ..... DISK BASIC EXIT (SAVE)
41A3    ...RET..JP 5756 ..... DISK BASIC EXIT (LINE)
41A6    ...RET..JP 5679 ..... DISK BASIC EXIT (USR)

*
*
THE FOLLOWING ADDRESSES ARE THE DOS EXIT ADDRESSES.
*
*

41A9    ...RET..JP XXXX ..... DOS EXIT FROM
41AC    ...RET..JP 5FFC ..... DOS EXIT FROM 1A1C
41AF    ...RET..JP 598E ..... DOS EXIT FROM 0368
41B2    ...RET..JP 6033 ..... DOS EXIT FROM ROM address 1AA1
41B5    ...RET..JP 5BD7 ..... DOS EXIT FROM ROM address 1AEC
41B8    ...RET..JP 5B8C ..... DOS EXIT FROM ROM address 1AF2
41BB    ...RET..JP 60A1 ..... DOS EXIT FROM ROM address 1B8C
41BE    .. RET..JP 577C ..... DOS EXIT FROM ROM address 2174
41C1    .. RET..JP 59CD ..... DOS EXIT FROM ROM address 032C
41C4    .. RET..JP XXXX ..... DOS EXIT FROM ROM address 0358
41C7    ...RET..JP 5F78 ..... DOS EXIT FROM ROM address 1EA6
41CA    ...RET..JP 5A15 ..... DOS EXIT FROM ROM address 206F
41CD    ...RET..JP 5B9A ..... DOS EXIT FROM ROM address 2103
41D0    ...RET..JP 5B99 ..... DOS EXIT FROM ROM address 2103
41D3    ...RET. JP 5B65 ..... DOS EXIT FROM ROM address 2108
41D6    ...RET..JP 5784 ..... DOS EXIT FROM ROM address 219E
41DC    ...RET..JP 5E63 ..... DOS EXIT FROM ROM address 222D
41DF    ...RET..JP 579C ..... DOS EXIT FROM ROM address 2278
41E2    ...RET..JP 5B51 ..... DOS EXIT FROM ROM address 0282



48

DCB Descriptions

The keyboard, video, and printer DCB'S (Device Control
Blocks) are defined in ROM at locations 06E7 - 06FF. They
are moved to the address show in the Communications
Region during the IPL sequence.

Video DCB  (Address 401D)

Relative Byte

0    0 0 0 0 0 1 1 1   Device type (7)
1    0 1 0 0 1 0 0 0     Driver address
2    0 0 0 0 0 1 0 1     (0458)
3    0 0 0 0 0 0 0 0    Next character address
4    0 0 1 1 1 1 0 0    3C00 =< X < 3FFF
5    0 0 0 0 0 0 0 0   0/value 0 = Suppress cursor
6    0 1 0 0 0 1 0 0    value = last char under cursor
7    0 1 0 0 1 1 1 1    RAM buffer addr (4F44)

Keyboard DCB  (Address 4015)

Relative Byte

0    0 0 0 0 0 0 0 1   Device type (1)
1    1 1 1 0 0 0 1 1    Driver address
2    0 0 0 0 0 0 1 1    (03E3)
3    0 0 0 0 0 0 0 0    
4    0 0 0 0 0 0 0 0   Not Used
5    0 0 0 0 0 0 0 0_
6    0 1 0 0 1 0 1 1    RAM buffer
7    0 1 0 0 1 0 0 1    address (494B)

Printer DCB  (Address 4025)

Relative Byte

0    0 0 0 0 0 1 1 0   Device type (6)
1    1 0 0 0 1 1 0 1     Driver address
2    0 0 0 0 0 1 0 1     (058D)
3    0 1 0 0 0 0 1 1   Lines/page (43H = 67)
4    0 0 0 0 0 0 0 0   Lines printed so far
5    0 0 0 0 0 0 0 0   Not Used
6    0 1 0 1 0 0 0 0     RAM buffer
7    0 1 0 1 0 0 1 0     address (5250)

Interrupt Vectors

Interrupts are a means of allowing an external event to
interrupt the CPU and redirect it to execute some specific
portion of code.  The signal that causes this to happen is
called an interrupt and the code executed in response to that
interrupt is called a service routine.  After the service
routine executes it returns control of the CPU to the point
where the interrupt occurred and normal processing
continues.

In order for interrupts to occur the system must be primed
to accept them.  When the system is primed it is ENABLED
which is shorthand for the instruction used to enable the
interrupt system (EI-Enable Interrupts).  A system that is
not enabled is DISABLED and again that is shorthand for
the disable instruction (DI-Disable Interrupts).  Besides
priming the system for interrupts there must be some
outside event to stimulate the interrupt.  On Level II
systems that could be a clock or a disk.  Actually both of
them generate interrupts - the clock gives one every 25
milliseconds, and the disk on demand for certain operations.

When running a Level II system without disks the
interrupts are disabled.  It is only when DOS is loaded that
interrupts are enabled and service routines to support
those interrupts are loaded.  Interrupts are disabled at the
start of the IPL sequence that is common to Level II and
DOS.  For Level II they will remain off, but on a DOS
system they will be enabled at the end of the initialization
in SYS0/SYS.

When an interrupt occurs two things happen.  First a bit
indicating the exact cause of the interrupt is set in byte
37E0.  Second an RST 38H instruction is executed. As a
result of the RST (which is like a CALL) the address of the
next instruction to be executed is saved on the stack
(PUSH'd) and control is passed to location 0038.  Stored at
0038 is a JP 4012.  During the IPL sequence 4012 was
initialized to:

4012 DI   Disable further interrupts
4013 RET  Return to point of interrupt

for non-disk systems or:

4012 CALL 4518  Service Interrupt

for disk systems

The service routine at 4518 examines the contents of 37E0
and executes a subroutine for each bit that is turned on and
for which DOS has a subroutine.  The format of the
interrupt status word at 37E0 is:

   7  6  5  4  3  2  1  0    <-- Bits

   X  X           X

                                Not used
                                Communications Interrupt
                                Not used
                                Disk Controller Interrupt
                                Clock Interrupt



49

Memory Mapped I/O

DOS maintains an interrupt service mask at 404C that
it uses to decide if there is a subroutine to be executed for
each of the interrupt status.  As released 404C contains a
C0 which indicates subroutines for clock and disk
interrupts.

The service routine at 4518 combines the status byte and
the mask byte by AND'ing them together.  The result is
used as a bit index into a table of subroutine addresses
stored at 404D - 405C.  Each entry is a two byte address of
an interrupt subroutine.  Bit 0 of the index corresponds to
the address at 404D/404E, bit 1 404F/4050, etc.

The service routine runs disabled.  It scans the interrupt
status from left to right jumping to a subroutine whenever a
bit is found on.  All registers are saved before subroutine
entry and a return address in the service routine is PUSH'd
onto the stack so a RET instruction can be used to exit the
subroutine.  When all bits in the status have been tested
control returns to the point of interrupt with interrupts
enabled.

Stack Frame Configurations

Level II usually uses the Communications Region for
temporary storage.  There are special cases, however where
that is not possible because a routine may call itself (called
recursion) and each call would destroy the values saved by
the previous call.  In those cases the stack is used to save
some of the variables.  Of course an indexed table could be
used, but in these cases the stack serves the purpose.

FOR Statement Stack Frame

All variable addresses associated with a FOR loop are
carried on the stack until the loop completes.  When a
NEXT statement is processed, it searches the stack
looking for a FOR frame with the same index address as
the current one.  The routine that searches the stack is at
location 1936.  Its only parameter is the address of the
current index which is passed in the DE register set.  The
stack is searched backwards from its current position to
the beginning of the stack.  If a FOR frame with a matching
index address is not found an NF error is generated.  The
stack frame searched for is given below.

Low Memory
                                         FOR Token
               ........................    Addr of FOR Index
                                           LSB / MSB order
               ........................  Sign of increment
                                         Type (-1 Integer, +1 SP)
               ........................
               ........................    STEP value
               ........................    LSB / MSB order

               ........................      TO value
               ........................      LSB / MSB order

               ........................    Binary line # of
                                           FOR statement
               ........................      Address of 1st loop
                                             statement
High Memory                              FOR Token



50

GOSUB Stack Configuration

Low Memory    ......................    Return address
                                        in Execution Driver
                                        GOSUB Token
              ......................   Binary value of
                                       GOSUB line #
              ......................    Address of GOSUB line
High Memory                             in PST (current position)

Expression Evaluation

Expression evaluation involves scanning an expression and
breaking it into separate operations which can be executed
in their proper order according to the hierarchy of operators.
This means a statement must be scanned and the operations
with the highest hierarchical value (called precedence
value) must be performed first.  Any new terms which
result from those operations must be carried forward and
combined with the rest of the expression.

The method used for evaluation is an operator precedence
parse.  An expression is scanned from left to right.
Scanning stops as soon as an operator token or EOS is
found.  The variable to the left of the operator (called the
current variable), and the operator (any arithmetic token for
- * / or exp) are called a 'set', and are either:

a) pushed onto the stack as a set or,

b) if a precedence break is detected the operation between
the previous set pushed onto the stack and the current
variable is performed.  The result of that operation then
becomes the current variable and the previous set is
removed from the stack.  After the computation another
attempt is made to push the new current variable and
operator onto the stack as a set.
This step is repeated until the new set is pushed or there are
no more sets on the stack with which to combine the current
value.  In that case the expression has been evaluated.

The variable/operator sets that are pushed on the stack have
the following format:

Precedence value for    -->
operator value in prior
set  zero for 1st

Continuation addr after -->
precedence break
computation. Usually
2346

                                           <--  Value for this
                                                variable

Type code (length)      -->                <-- Token for operator
for this variable                              after this variable
                                                0=+, 1=-, 2=*,
                                                3=/  4=[  5=AND
Address of precedence   -->                     6=0R
computation routine.
2406 for +, -, * and /

The test for precedence break is simple.  If the operator (the
token where the scan stopped) has the same or a lower
precedence value as the precedence value for the last set
pushed on the stack then a break has occurred, and an
intermediate computation is required.  The computation is

performed automatically by POPing the last set.  When this
occurs control is transferred to a routine (usually at 2406 )
which will perform the operation specified in the set
between that value (the one from the set on the stack), and
the current variable.  The result then becomes the current
variable.  When the computation is finished control returns
to a point where the precedence break test is repeated.  This
time the set which caused the last break is not there, so the
test will be between the same operator as before and the
operator in the previous set.  If there is no previous set then
the current variable and operator are pushed as the next set.
Note, an EOS or a non-arithmetic token are treated as
precedence breaks.

Assuming no break occurs the current variable and operator
are pushed on the stack as the next set, and the scan of the
expression continues from the point where it left off. Let's
take an example. Assume we have the expression,

A equals B plus C * D / E 5

Scanning begins with the first character to the right of the
equals sign and will stop at the first token (plus).  B plus
would be pushed as the first set because: a) there was no
prior set so there could not have been a precedence break,
and b) the scan stopped on an arithmetic token (plus).

The next scan would stop at the *. Again the variable /
operator pair of C * would be pushed this time as set 2
although for slightly different reasons than before.  The *
precedence value is higher than the plus precedence value
already pushed so there is no break.  At this time the stack
contains,

Set 2
                     00

                     2346

                                B value

                     04  00     Token for +
                                after B
                     2406

                    Set 1

Precedence value    79
for + in Set 1
                     2346

                                C value

                     04  02     Token for *
                                after C
                     2406

Scan three would stop on the / following D. This time there
would be a precedence break because * and / have the same
values.  Consequently set 2 would be POP'd from the stack
and control passes to the precedence break routine at 2406
(other routines may be used depending on the operation to
be performed - check the listing for details).  Here the
operation between set 2 (C*) and the current value (D)
would be performed.  This would result in a new current
value that will be called M.  M equals C * D

After the multiplication control goes back to 2346 (con-
tinuation after break processing) where the rules from
above are used.  This time the current value is pushed as set



51

2 because it has a higher precedence value (/) than that in
set 1 (plus).  Now the stack contains

    00        Precedence value     79
   ---------                      ---------
     2346                           2346
   ---------                      ---------
              B value                        C * D value
   ---------                      ---------
    04   00   Token for +          04   03   Token for /
   ---------  after B             ---------  after C * D
     2406                           2406

     Set 1                          Set 2

After pushing set 2 the scan continues, stopping at the
operator. It has a higher precedence value than the (/) in
set 2 so a third set is added to the stack giving:

    --------
    --------   Precedence          7C
    --------   for / in set 2     ---------
    --------                        2346
                                  ---------
      Set 1                                  E value
                                  ---------
    --------                       04   04   Token for /
    --------                      ---------   after E
    --------                        2406
    --------

      Set 2

The next scan is made and an EOS is found following the 5
(which is now the current value).  As mentioned earlier an
EOS or non-arithmetic token is an automatic precedence
break, so set 3 is POP'd from the stack and E 5 is computed
and becomes the current value.  Control passes to 2346
where the rules for pushing the next set are applied and set
2 get's POP'd because the current operator is an EOS.  Set 2
(M/) and the current value are operated on giving a current
value of

M / E 5  or
C * D / E 5

Again control goes to 2346 which forces set 1 to be POP'd
because the current operator is an EOS.  When the set is
POP'd control goes to the computation routine where the
current value and set 1 are operated on.  This yields a
current value of

B plus C * D / E 5

Now control goes to 2346 and this time the stack is empty
causing control to be returned to the caller.  The expression
has been evaluated and its value is left in WRA1.

DOS Request Codes

DOS request codes provide a mechanism for executing
system level commands from within a program.  The way
they work is to cause the DOS overlay module SYSX/SYS
associated with the request to be loaded into 4200 - 5200
and executed.  When the request has been satisfied control
is returned to the caller as though a subroutine call had been
made.

DOS functions may be executed by loading a DOS request
code into the A register and executing a RST 28 instruction.
Because of the way DOS processes these request codes the
push on the stack that resulted from the RST instruction is
lost, and control will be returned to the next address found
on the stack - rather than to the address following the RST
instruction. For example,

LD A,VAL LOAD DOS  FUNCTION CODE
RST 28 EXECUTE DOS FUNCTION
. THIS  IS WHERE WE WANT TO
. RETURN TO
. BUT WILL NOT BECAUSE OF THE WAY
. THE STACK IS MANAGED BY DOS

This will not work because the return address (stored on the
stack by the RST 28) has been lost during processing.
Instead the following sequence should be used:

LD A,VAL LOAD REQUEST CODE
CALL DOS PUT RETURN ADDR ON STACK
.
.
.

DOS RST 28 EXECUTE DOS FUNCTION
ALL REGISTERS ARE PRESERVED
WE WILL AUTOMATICALLY RET TO
CALLER OF DOS

The request code value loaded into the A-register must
contain the sector number minus 2 of the directory sector
for the overlay to be loaded and a code specifying the exact
operation to be performed. The format of the request code
is:
   7  6  5  4  3  2  1  0    <-- Bits

   1  X  X  X  X  X  X  X
                                Sector number -2, of
                                directory entry for DOS
           Function code to     module to be loaded
           be passed to DOS
           module               Must be a 1, otherwise
                                request will be ignored

As it is presently implemented the file pointed to by the
first entry in the specified directory sector will be loaded.
There is no way for example, to load the file associated
with the 3rd or 4th entry. A list of the system overlay
modules and their functions follows. These descriptions are
incomplete. See the individual modules for a complete
description.

MODULE   DIRECTORY SECTOR  REQUEST  SUB-FUNCTIONS
            MINUS 2        CODE

SYS1          1              93     10 - write 'DOS READY'
                             AC     20 - write 'DOS READY'
                             BC     30 - scan input string
                             C3     40 - move input string to
                                         DCB
                             D3     50 - scan and move input
                                         string
                             E3     60 - append extension to DCB
                             F3     70 - reserved

SYS2          2              94     10 - OPEN file processing
                             A4     20 - INST file processing
                             B4     30 - create  directory
                                         overflow entry
                             C4     40 -
                             D4     50 -  reserved
                             E4     60 -
                             F4     70 -

SYS3          3              95     10 - CLOSE file processing
                             A5     20 - KILL file processing
                             B5     30 -
                             C5     40 - reserved
                             D5     50 -
                             E5     60 - load SYS3/SYS
                             F5     70 - format diskette
SYS4

SYS5



52

Chapter 5

A BASIC SORT Verb

Contained in this chapter is a sample assembly program that
demonstrates the use of the ROM calls and tables described in
the previous chapters. In this example DOS Exits and Disk
BASIC Exits are used to add a SORT verb to BASIC.

In this case a SORT verb will be added so that the statement

100 SORT I$, O$, K1$

be used to read and sort a file specified by the string I$, O$
and K1$ are strings which specify the output file name and the
sort key descriptors. The procedure for doing this is simple.
First we must modify the Input Phase to recognize the word
SORT and replace it with a token.  This can be accomplished
by using one of the DOS Exits.

A DOS Exit is taken during the Input Phase immediately after
the scan for reserved words.  We will intercept this exit to
make a further test for the word SORT and replace it with a
token.  Processing will then continue as before. Before using
any DOS Exit study the surrounding code to determine exact
register usage.  In this case it is important to note that the
length of the incoming line is in the BC register when the exit
is taken.  If the subroutine compresses the line (by replacing
the word SORT with a token) then its length will have
changed and the new length must replace the original contents
of BC.

A second modification must be made to the Execution Driver,
or somewhere in its chain, to recognize the new token value
and branch to the SORT action routine.  This presents a slight
problem because there are no DOS Exits in the execution
driver before calling the verb routine, and since the driver
code and its tables are in ROM they cannot be changed.  In
short there is no easy way to incorporate new tokens into the
Execution Phase.

The solution is to borrow a Disk BASIC token and piggy-
back another token behind it.  Then any calls to the verb
routine associated with the borrowed token must be
intercepted and a test make for the piggy-backed token.  If one
is found control goes to the SORT verb routine otherwise it
passes to the assigned verb routine.  In this example the token
FA will be borrowed and another FA will be tacked behind it
giving a token FAFA.

This example is incomplete because the LIST function has not
been modified to recognize the sort token.  If a LIST
command is issued the verb MID$MID$ will be given for the
SORT verb.  There is one more detail that needs attention
before discussing the verb routine.  Using the memory layout
figure in Chapter 1 we can see that there is no obvious place to
load an assembly language program without interfering
somehow with one of BASIC's areas.  Depending on where
we loaded our verb routine it could overlay the String Area, or
the Stack, or maybe even reach as low as the PST or VLT.  Of
course we might get lucky and find an area in the middle of
the Free Space List that never gets used but that's too risky.

BASIC has a facility for setting the upper limit of the memory
space it will use.  By using this feature we can reserve a region
in high memory where our verb routine can be loaded without
disturbing any of BASIC's tables.  Now for the details of verb
routine.

Because a sort can be a lengthy piece of code only the details
that pertain to DOS Exits, Disk BASIC, and some of the ROM
calls from Chapter 2 will be illustrated.  The verb routine has
two sections.  The first section will be called once to modify
the DOS and Disk BASIC exit addresses (also called vectors)
in the Communications Region to point to locations within the
verb routine.  The vector addresses must be modified after
BASIC has been entered on a DOS system because they are



53

initialized by the BASIC command.  The second section has
two parts.

Part one is the DOS Exit code called from the Input Scanner.
Part two is the verb action routine for the SORT verb.  It is
entered when a FA token is encountered during the Execution
Phase.

The system being used will be assumed to have 48K of RAM,
at least 1 disk, and NEWDOS 2.1.  The verb routine will
occupy locations E000 - FFFF.  The entry point for initializing
the vectors will be at E000.  All buffers used will be assigned
dynamically in the stack portion of the Free Space List.  The
verb routine will be loaded before exiting DOS and entering
Level II BASIC.  Although it could be loaded from the BASIC
program by using the CMD'LOAD…..' feature of NEWDOS.

   1. IPL
   2. LOAD,SORT     :(load verb into E000 - FFFF  1)
   3. BASIC,57344   :(protect verb area)

100 DEF USR1(0) = &HE000 : initialization entry point
110 A = USR1(0)          : initialize vectors

RUN                      : initialize the sort

100 I$="SORTIN/PAY:1"    : (sort in
110 O$-"SORTOUT/PAY:1"   : (Sort out
120 KS-"A,A,100-120"     : (sort key: ascending order ASCII
                            key, sort field is 10
130 SORT I$,O$,K$        : (sort file)

RUN

00100 ORG 0E000H
00110 ; INITIAL ENTRY POINT TO INITIALIZE DOS EXIT AND
00120 ; DISK BASIC ADDRESSES.
00130 LD HL,(41B3H) ; ORIGINAL DOS EXIT VALUE
00140 LD (ADR1+1),HL ; IS STILL USED AFTER OUR
00150 ; PROCESSING
00160 LD HL,(41DAH) ; ORIGINAL DISK BASIC ADDR FOR
00170 ; MID$ TOKEN (FA)
00180 LD (ADR2+1),HL ; SAVE IN CASE FA TOKEN FOUND
00190 LD HL,NDX
00200 LD (41B3H),HL
00210 LD HL,NDB
00220 ; ; OUR ADDR
00230 LD (41DAH),HL
00240 ; ; FA TOKEN W/OUR ADDR
00250 RET ; RET TO EXECUTION DRIVER
00260 ;*   GET ADDRESS OF VARIABLE
00270 ;* THIS SECTION OF CODE IS ENTERED AS A DOS EXIT DURING THE
00280 ;* INPUT PHASE.  IT WILL TEST FOR A 'SORT' COMMAND AND REPLACE
00290 ;* IT WITH A 'FAFA' TOKEN. THE ORGINAL DOS EXIT ADDR HAS BEEN
00300 ;* SAVED AND WILL BE TAKEN AT ADR1.
00310 ;*
00320 NDX CALL SAV ; SAVE ALL REGISTERS
00330 LD IX,SORT-1 ; TEST STRING
00340 LD B,3 ; NO. OF CHARS TO MATCH
00350 NDX1 INC HL ; START OF LOOP
00360 INC IX ; BUMP TO NEXT TEST CHAR
00370 LD A,(IX+0) ; GET A TEST CHAR
00380 CP (HL) ; COMPARE W/INPUT STRING
00390 JR NZ,OUT ; STOP WHEN FIRST MIS-MATCH
00400 DJNZ NDX1 ; ALL 4 CHARS MUST MATCH
00410 ;*
00420 ;* WE HAVE A MATCH. NOW REPLACE THE WORD 'SORT' WITH A TOKEN
00430 ;* 'FAFA' AND COMPRESS THE STRING
00440 ;*
00450 INC HL ; FIRST CHAR AFTER 'SORT'
00460 PUSH HL ; SAVE FOR COMPRESSION CODE
00470 LD BC,-3 ; BACKSPACE INPUT STRING
00480 ADD HL,BC ; START OF WORD 'SORT'
00490 LD (HL),0FAH ; TOKEN REPLACES 'S'
00500 INC HL ; NEXT LOC IN INPUT STRING
00510 LD (HL),0FAH ; TOKEN REPLACES '0'
00520 INC HL ; NEXT LOC IN INPUT STRING
00530 POP DE ; STRING ADDR AFTER SORT

00540 EX DE,HL ; SO WE CAN USE RST 10
00550 ;*                 ; TO FETCH NEXT CHAR
00560 ;* NOW COMPRESS THE INPUT STRING
00570 ;*
00580 LD BC,3 ; SET COUNT OF CHARS IN
00590 ;* ; EQUAL TO NO SKIPPED OVER
00600 NDX2 RST 10H ; GET NEXT CHAR, DISCARD
00610 ;* ; BLANKS
00620 LD (DE),A ; MOVE IT DOWN
00630 INC DE ; BUMP SOURCE ADDR
00640 INC C ; COUNT 1 CHAR IN LINE
00650 OR A ; TEST FOR END OF STRING
00660 JR NZ,NDX2 ; NOT END, LOOP
00670 LD (DE),A ; EACH LINE MUST END WITH
00680 ;* ; 3 BYTES OF ZEROS
00690 INC DE ; BUMP TO LAST BYTE
00700 LD (DE),A ; STORE 3 RD ZERO
00710 INC C ; THEN SET BC - LENGTH OF
00720 INC C ; LINE + 1
00730 INC C ; SO BASIC CAN MOVE IT
00740 LD (TEMP),BC ; SAVE NEW LINE LENGTH
00750 CALL RES ; RESTORE REGISTERS
00760 LD BC,(TEMP) ; NEW LINE LENGTH TO BC
00770 JR ADR1 ; EXIT
00780 OUT CALL     RES ; RESTORE REGISTERS
00790 ADR1 JP 0 ; CONTINUE ON TO ORIGINAL
00800 ;* ; DOS EXIT
00810 ;* DISK BASIC EXIT FOR FA TOKEN. TEST FOR SORT TOKEN FAFA
00820 ;*
00830 NDB CALL SAV ; SAVE ALL REGISTERS
00840 INC HL ; SKIP TO CHAR AFTER TOKEN
00850 LD A,(HL) ; TEST FOR SECOND 'FA'
00860 CP 0FAH ; IS FOLLOWING CHAR A FA
00870 JR Z,NDB1 ; Z IF SORT TOKEN
00880 CALL RES ; RESTORE REGISTERS
00890 ADR2 JP 0 ; CONTINUE WITH MID$ PROCESSING
00900 ;*
00910 ;* WE HAVE A SORT TOKEN
00920 ;*
00930 NDB1 INC HL ; SKIP OVER REST OF TOKEN
00940 CALL GADR ; GET ADDR OF 1ST PARAM
00950 LD (PARM1),DE ; SAV ADDR OF INPUT FILE NAME
00960 RST 08 ; LOOK FOR COMMA
00970 DEFM ',' ; SYMBOL TO LOOK FOR
00980 CALL GADR ; GET ADDR OF 2ND PARAM
00990 LD (PARM2),DE ; SAV ADDR OF OUTPUT FILE NAME
01000 RST 08 ; LOOK FOR COMMA
01010 DEFM ',' ; SYMBOL TO LOOK FOR
01020 CALL GADR ; GET ADDR OF SORT KEYS
01030 LD (PARM3),DE ; SAV ADDR OF SORT KEY
01040 LD (TEMP),HL ; SAVE ENDING POSITION
01050 ;* ; IN CURRENT STATEMENT
01060 ;*
01070 ;* NOW, BLANK FILL I/O DCBS
01080 ;*
01090 LD IX,DCBL ; LIST OF DCB ADDRS
01100 LD C,2 ; NO OF DCBS TO BLANK
01110 LD A,20H ; ASCII BLANK
01120 L1 LD L,(IX+0) ; LSB OF DCB ADDR
01130 LD H,(IX+1) ; MSB OF DCB ADDR
01140 LD B,32 ; NO OF BYTES TO BLANK
01150 L2 LD (HL),A ; BLANK LOOP
01160 INC HL
01170 DJNZ L2 ; LOOP TILL BLANKED
01180 INC IX ; BUMP TO NXT DCB ADDR
01190 INC IX ; BUMP AGAIN
01200 DEC C ; ALL DCBS BLANKED
01210 JR NZ,L1 ; NO
01220 ;*
02230 ; YES, MOVE FILE NAMES TO DCB AREAS
01240 ;*
01250 LD HL,(PARM1) ; ADDR OF INPUT FILE NAME STRNG
01260 LD DE,DCBI ; INPUT DCB
01270 CALL 29C8H ; MOVE NAME TO DCB
01280 LD HL,(PARM2) ; ADDR OF OUTPUT FILE NAME
01290 LD DE,DCBO ; OUTPUT DCB
01300 CALL 29C8H ; MOVE NAME TO DCB
01310 LD HL,(PARM3) ; GET ADDR OF KEY STRING
01320 INC HL ; SKIP OVER BYTE COUNT
01330 LD C,(HL) ; GET LSB OF STRNG ADDR
01340 INC HL ; BUMP TO REST OF ADDR
01350 LD H,(HL) ; GET MSB OF STRNG ADDR
01360 LD L,C ; NOW HL = STRNG ADDR
01370 CALL 1E3DH ; MUST BE ALPHA
01380 JR NC,YA1 ; OK
01390 JP ERROR ; INCORRECT SORT ORDER
01400 YA1 LD (ORDER),A ; SAVE SORT ORDER (A/D)
01410 INC HL ; SKIP TO TERMINAL CHAR
01420 RST 08 ; TEST FOR COMMA
01430 DEFM ','
01440 CALL 1E3DH ; MUST BE ALPHA
01450 JR NC,YA5 ; OK



54

01460 JP ERROR
01470 YA5 LD (TYPE),A ; SAVE TYPE (A/B)
01480 INC HL ; SKIP TO TERMINAL CHAR
01490 RST 8 ; TEST FOR COMMA
01500 DEFM ','
01510 CALL 0E6CH ; GET RECORD SIZE
01520 LD DE,(4121H) ; GET SIZE FROM WRA1
01530 LD (SIZE),DE ; SAVE IT
01540 RST 20H ; MUST BE AS INTEGER
01550 JP M,YA10 ; MINUS IF INTEGER
01560 JP ERROR
01570 YA10 RST 08 ; LOOK FOR COMMA
01580 DEFM ','
01590 CALL 0E6CH ; GET STARTING POSITION
01600 LD DE,(4121H) ; GET POS FROM WRA1
01610 LD (START),DE ; SAVE IT
01620 RST 08 ; LOOK FOR -
01630 DEFM '-' ; CHAR TO TEST FOR
01640 CALL 0E6CH ; GET ENDING POS OF KEY
01650 LD DE,(4121H) ; GET VALUE FROM WRA1
01660 LD (END),DE ; SAVE ENDING S01670 LD

HL,(TEMP) ; RESTORE CURRENT LIME ADDR
01680 ;* ; TO EOS ON RETURN
01690 CALL RES ; RESTORE REGISTERS
01700 LD HL,(TEMP) ; RESTORE EOS ADDR
01710 RET ; RETURN TO BASIC
01720 ;*
01730 ;*
01740 ;*
01750 SORT DEFM 'S' ; S OF SORT
01760 DEFB 0D3H ; TOKEN FOR OR OF SORT
01770 DEFM 'T' ; T OF SORT
01780 ;*
01790 ;*   SAVE ALL REGISTERS
01800 ;*
01810 SAV EX DE,HL
01820 EX (SP),HL ; SAV DE/RTN ADDR TO HL
01830 PUSH BC
01840 PUSH AF
01850 PUSH IX
01860 PUSH DE ; SAVE ORIGINAL HL
01870 EX DE,HL ; RESTORE HL RET ADDR TO DE
01880 PUSH DE ; RET ADDR TO STK
01890 RET ; RET TO CALLER
01900 ;*
01910 ;*     RESTORE ALL REGISTERS
01920 ;*
01930 RES POP HL ; RTN ADDR TO HL
01940 POP DE ; REAL HL

01950 POP IX
01960 POP AF
01970 POP BC
01980 EX (SP),HL ; RTN ADDR TO STK
01990 EX DE,HL
02000 RET
02010 JP (HL) ; RTN TO CALLER
02020 ;*
02030 ;* GET THE ADDRESS OF THE NEXT VARIABLE INTO DE
02040 ;*
02050 GADR LD A,(HL) ; GET NEXT CHAR FROM INPUT
02060 ;* ; STRNG, TST FOR LITERAL
02070 CP 22H ; IS IT A QUOTE -START OF
02080 ;* ; A LITERAL-
02090 JR NZ,GADR2 ; NO, GO FIND ADDR OF VAR
02100 CALL 2866H ; YES, GO BUILD A LSPT ENTRY
02110 JR GADR5 ; THEN JOIN COMMON CODE
02120 GADR2 CALL 2540H ; GET ADDR OF NEXT VARIABLE
02130 GADR5 RET 20H ; IS IT A STRING
02140 LD DE,(4121H) ; ADDR OF NEXT VAR
02150 RET Z ; RET IF STRING VAR
02160 POP HL ; CLEAR STACK
02170 POP HL ; CLEAR STACK
02180 LD A,2 ; ERROR CODE FOR SYNTAX ERR
02190 JP 1997H ; GO TO ERROR ROUTINE
02200 ;*
02210 ;*  ERROR EXIT
02220 ;*
02230 ERROR CALL RES ; RESTORE REGISTERS
02240 POP HL ; CLEAR STACK
02250 LD A,2 ; SYNTAX ERROR CODE
02260 JP 1997H ; PRINT ERROR MESSAGE
02270 ;*
02280 ;*
02290 ;*
02300 DCBL DEFW DCBI
02310 DEFW DCBO
02320 PARM1 DEFW 0 ; INPUT FILE NAME STRING ADDR
02330 PARM2 DEFW 0 ; OUTPUT FILE NAME STRING ADDR
02340 PARM3 DEFW 0 ; KEY STRING ADDR
02350 TYPE DEFB 0 ; RECORD TYPE (A/B/C)
02360 ORDER DEFB 0 ; SORT ORDER (A/D)
02370 SIZE DEFW 0 ; RECORD SIZE
02380 START DEFW 0 ; STARTING POSITION OF KEY
02390 END DEFW 0 ; ENDING POSITION OF KEY
02400 TEMP DEFW 0 ; HOLDS EOS ADDR
02410 DCBI DEFS 32 ; INPUT DCB
02420 DCBO DEFS 32 ; OUTPUT DCB
02430   END



55

Chapter 6

BASIC Overlay Routine

This example shows how the tables in the Communications
Region can be manipulated so that a BASIC program can
load and execute overlays.  The overlay program will add
statements to an executing BASIC program while preserving
all the current variables.  The calling sequence to be used is:

100 DEF USRl=&HE000   : Address of overlay program
            .         : Main body of application program
            .
            .
300 F$="FILE1/BAS"    : File containing overlay
310 Z=USR1(500)       : Replace lines 500 thru the end
            .         : of the program with the
            .         : statement from FILE1/BAS.)
320 GOSUB 500         : Execute the overlay
            .
            .
            .
500 REM START OF OVERLAY AREA
            .
            .

The operating assumptions for this example will be the same
as those in chapter 5.  Note, overlay files containing the
ASCII file must have been saved in the A mode.

The program itself will be considerably different, how-ever.
For instance, there will be no use of DOS
Exits.  This means that the CR will not need modification
so there will be no need for an initial entry point.  One
parameter will be passed in the calling sequence while the
other one will have an agreed name so that it can be
located in the VLT.

When a BASIC program is executing there are three
major tables that it uses.  First is the PST where the
BASIC statements to be executed have been stored.
Second is the VLT where the variables assigned to the
program are stored, and the third table is the FSL which
represents available memory.  All of these tables occur in
the order mentioned.  The problem we need to overcome in
order to support overlays is to find a way to change the first
table while maintaining the contents of the second one.  A
diagram of memory showing the tables follows.

                      Level II
                        ROM
                   ----------------
                    Communications
                        Region

                   ----------------
                      DOS Nucleus
                   ----------------
                       Disk BASIC
                   ----------------
                          PST        <--- this table needs to be
                                          modified
                   ----------------
                          VLT        <--- this table needs to
                                          remain intact

                   ----------------
                          FSL

                   ----------------
                      String Area
                   ----------------
                       Overlay
                       Program
end of memory --->

Fortunately this can be accomplished quite easily.  By
moving the VLT to the high end of FSL we can separate it
from the PST.  Then the overlay statements can be read from
disk and added to the PST.  Obviously the PST would either
grow or shrink during this step unless the overlay being
loaded was exactly the same size as the one before it.  After
the overlay statements have been added the VLT is moved
back so it is adjacent to the PST.  Then the pointers to the
tables moved are updated and control is returned to the
BASIC Execution Driver.

The overlay loader used in this example assumes that the file
containing the overlay statements is in ASCII format.  This
means that each incoming line must be tokenized before
being moved to the PST. To speed up processing the loader
could be modified to accept tokenized files.

There is no limit to the number of overlays that can be
loaded.  The program will exit with an error if a line number
less than the starting number is detected.  The loader does
not test for a higher level overlay destroying a lower one,
this would be disastrous - as the return path would be
destroyed.

A sample program to load three separate overlays is given as
an example.



56

100 A = 1.2345
110 B = 1
120 IF B = 1 THEN F$ = "FILE1"
130 IF B = 2 THEN F$ = "FILE2"
140 IF B = 3 THEN F$ = "FILE3"
150 Z = USR1(500)
160 GOSUB 500
170 B = B + 1
180 IF B > 3 THEN 110
190 GOTO 120

500 PRINT"OVERLAY #1 ENTERED"
510 PRINT A
520 C = 25
530 D = 30
540 E = C+D+A                      Contents
550 PRINT "C = ";C                 of File 1
560 PRINT "D = ";D
570 PRINT "E = ";E
580 RETURN

500 PRINT "OVERLAY #2 ENTERED"
510 PRINT A
520 C = C + 1
530 D = D + 1
540 E = E + 1                      Contents
550 REM                            of File 2
560 REM
570 REM
580 REM
590 PRINT "C, D, E =";C,D,E
600 RETURN

500 PRINT "OVERLAY #3 ENTERED"
510 A = A + 1                      Contents
520 PRINT "A = ";A                 of File 3
530 RETURN

00100 ORG 0F000H
00110 OPEN EQU 4424H ; DOS ADDRESS
00120 READ EQU 4436H ; DOS ADDRESS
00130 ERN EQU 12 ; DISK DCB ADDRESS
00140 NRN EQU 10 ; DISK DCB ADDRESS
00150 EOF EQU 8 ; DISK DCB ADDRESS
00160 ;*
00170 ;*  ENTRY POINT FOR OVERLAY LOADING OF BASIC PROGRAMS
00180 ;*
00190 PUSH AF ; SAVE ALL REGISTERS
00200 PUSH BC
00210 PUSH DE
00220 PUSH HL
00230 LD HL,-1 ; INITIALIZE SECTOR COUNT
00240 LD (RCOUNT),HL ; TO MINUS 1
00250 LD HL,00 ; SO WE CAN LOAD CSP
00260 ADD HL,SP ; LOAD CSP
00270 LD (CSP),HL ; SAVE FOR RESTORATION
00280 LD DE,(4121H) ; LINE NO TO START OVERLAY
00290 LD (LINE),DE ; SAVE FOR FUTURE REF
00300 LD A,(40AFH) ; FUNCTION VALUE TYPE
00310 LD (TYPE),A ; MUST BE RESTORED AT END
00320 ;*
00330 ;*  BLANK FILL DCB BEFORE MOVING NAME INTO IT
00340 ;*
00350 LD B,32 ; NO. OF BYTES TO BLANK
00360 LD HL,DCB ; DCB ADDR
00370 LD A,20H ; ASCII BLANK
00380 BFL LD (HL),A ; MOVE ONE BLANK
00390 INC HL ; BUMP TO NEXT WORD
00400 DJNZ BFL ; LOOP TILL DCB FILLED
00410 ;*
00420 ;*  GET OVERLAY FILE NAME FROM VARIABLE F$
00430 ;*  MOVE IT INTO THE BLANKED DCB
00440 ;*
00450 LD HL,LFN ; STRING FOR COMMON VAR NAME
00460 CALL 2540H ; GET ADDR OF F$
00470 RST 20H ; MAKE SURE IT'S A STRING
00481 JR Z,OK ; ZERO IF STRING
00490 JP ERR ; WRONG TYPE OF VARIABLE
00500 OK LD HL,(4121H) ; GET ADDR OF F$ INTO HL
00510 LD DE,DCB ; DCB ADDR
00520 CALL 29C8H ; MOVE F$ NAME TO DCB
00530 ;*
00540 ;*  INITIALIZE ALL LOCAL VARIABLES
00550 ;*
00560 LD A,0 ; SET PASS FLAG TO ZERO

00570 LD (PF),A ; PASS FLAG
00580 LD (FI),A ; SECTOR BUFFER INDEX
00590 ;*
00600 ;*  LOCATE ADDR OF VARIABLE ASSIGNED TO FUNCTION CALL. IT
00610 ;*  MUST BE RECOMPUTED AFTER THE OVERLAY HAS BEEN LOADED
00620 ;*  BECAUSE THE VLT WILL NAVE BEEN MOVED.  NEXT, ALLOCATE
00630 ;*  SPACE IN THE FSL FOR THE SECTOR BUFFER USED FOR
00640 ;*  READING THE OVERLAY FILE.
00650 ;*
00660 LD HL,00 ; SO WE CAN LOAD CSP
00670 ADD HL,SP ; HL = CSP
00680 PUSH HL ; SAVE CSP
00690 LD BC,20 ; AMT TO BACKSPACE CSP
00700 ADD HL,BC ; GIVES CSP - 20 OR ADDR
00710 ;* ; OF FUNCTION VARIABLE
00720 LD (VARADR),HL ; SAVE STK ADDR OF VAR
00730 POP HL ; RESTORE CSP TO HL
00740 LD BC,-256 ; AMT OF SPACE TO ALLOCATE
00750 ;* ; IN FSL FOR SECTOR BUFFER
00760 ADD HL,BC ; COMPUTE NEW CSP
00770 LD (BADDR),HL ; START OF SECTOR BUFFER
00780 LD SP,HL ; IS ALSO NEW CSP
00790 PUSH HL
00800 LD DE,(40F9H) ; CURRENT END OF PST
00810 LD (CEPST),DE ; SAVE FOR COMPUTATIONS
00820 LD HL,(40FBH) ; START OF ARRAYS
00830 XOR A ; CLEAR CARRY
00840 SBC HL,DE ; COMPUTE OFFSET FROM START
00850 ;* ; OF VLT TO START OF ARRAYS
00860 LD (LSVLT),HL ; SAVE OFFSET
00870 ;*
00880 ;*
00890 ;*
00900 LD DE,(LINE) ; FIND ADUR OF LINE WHERE
00910 CALL 1B2CH ; OVERLAY STARTS IN PST
00920 LD (40F9H),BC ; MAKE IT TEMP END OF PST
00930 ;*
00940 ;*  COMPUTE LENGTH OF VLT
00950 ;*
00960 LD DE,(CEPST) ; ORGINAL END OF PST
00970 LD HL,(40FDH) ; START OF FSL
00980 XOR A ; CLEAR CARRY
00990 SBC HL,DE ; GIVES LNG -1 OF VLT
01000 INC HL ; CORRECT FOR -1
01010 LD (LVLT),HL ; SAVE LENGTH OF VLT
01020 POP HL ; RESTORE CSP TO HL
01030 LD BC,-50 ; ASSUMED STK LENG NEEDED
01040 ADD HL,BC ; GIVE END OF TEMP VLT
01050 LD BC,(LVLT) ; NOW, SUBTRACT LENGTH OF
01060 XOR A ; VLT FROM END TO GET START
01070 SBC HL,BC ; ADDRESS
01080 LD (SNVLT),HL ; SAVE END OF TEMP VLT
01090 PUSH HL ; SO WE CAN
01100 POP DE ; LOAD IT INTO DE
01110 LD HL,(CEPST) ; START OF OLD PST
01120 LD BC,(LVLT) ; SIZE OF VLT
01130 LDIR ; MOVE VLT TO TEMP LOC.
01140 ;*
01150 ;*   BEGIN OVERLAY LOADING
01160 ;*
01170 LD DE,DCB ; DCB FOR OVERLAY FILE
01180 LD HL,(BADDR) ; SECTOR BUFF ADDR
01190 LD BC,0 ; SPECIFY SECTOR I/O
01200 CALL OPEN ; OPEN OVERLAY FILE
01210 LOOP CALL GNL ; GET NEXT LINE FROM FILE
01220 JR Z,OUT ; ZERO IF NO MORE LINES
01230 ;* ; IN OVERLAY FILE
01240 CALL ATOB ; ADD LINE TO PST
01250 JR LOOP ; LOOP TILL FILE EXHAUSTED
01260 ;*
01270 ;*   OVERLAY STATEMENTS HAVE BEEN ADDED. RESET POINTERS
01280 ;*   TO VLT AFTER MOVING IT DOWN (ADJACENT TO PST).
01290 ;*
01300 OUT LD HL,(SNVLT) ; START OF TEMP VLT
01310 LD DE,(40F9H) ; CURRENT END OF PST
01320 INC DE ; LEAVE TWO BYTES
01330 INC DE ; OF ZEROS AT END OF PST
01340 LD (40F9H),DE ; SAVE START ADDR OF NEW VLT
01350 LD BC,(LVLT) ; LENGTH OF VLT
01360 LDIR ; MOVE VLT TO END OF PST
01370 INC DE ; GIVES ADDR OF FLS
01380 PUSH DE ; SAVE FSL ADDR
01390 LD HL,(40F9H) ; START OF VLT
01400 LD BC,(LSVLT) ; PLUS LNG OF SIMP VAR
01410 ADD HL,BC ; GIVES ADDR OF ARRAYS PTR
01420 LD (40FBH),HL ; SAVE NEW ARRAYS POINTER
01430 POP HL ; HL = NEW FSL ADDR
01440 LD (40FDH),HL ; UPDATE FSL
01450 ;*
01460 ;*   COMPUTE DISTANCE VLT HAS MOVED AND UPDATE THE ADDR OF
01470 ;*   THE FUNCTION VARIABLE BEING CARRIED ON THE STACK.
01480 ;*



57

01490 LD DE,(CEPST) ; ORIGINAL START OF VLT
01500 LD HL,(40F9H) ; CURRENT START OF VLT
01510 RST 18H ; COMPARE THE ADDRESSES
01520 JR NC,UP ; NEW VLT WAS MOVED UP
01530 PUSH HL ; REVERSE OPERANDS
01540 PUSH DE
01550 XOR A ; CLEAR CARRY
01560 POP HL ; RESTORE OPERANDS
01570 POP DE
01580 JR UP1 ; GO COMPUTE DISTANCE
01590 UP XOR A ; CLEAR CARRY FOR SUB
01600 UP1 SBC HL,DE ; COMPUTE ANT VLT HAS MOVED
01610 PUSH HL ; SAVE DISTANCE
01620 LD HL,(VARADR) ; THEN ADDR IT TO ADDR
01630 LD C,(HL) ; CARRIED ON STK
01640 INC HL ; BUMP TO MSB OF ADDR
01650 LD B, (HL) ; BC = ADDR OF VAR THAT WAS
01660 ;* ; CARRIED ON STK
01670 POP HL ; GET DISPLACEMENT
01680 ADD HL,BC ; GET NEW ADDR (BECAUSE VLT
01690 ;* ; HAS BEEN MOVED
01700 PUSH HL ; SO WE CAN LOAD IT INTO
01710 POP DE ; LOAD NEW ADDR INTO DE
01720 LD HL,(VARADR) ; REFETCH STK ADDR
01730 LD (HL),E ; LSB OF FUNCTION VAR ADDR
01740 INC HL ; NEXT BYTE ADDR ON STK
01750 LD (HL),D ; MSB OF FUNCTION VAR ADDR
01760 ;*
01770 ;*  RESET TYPE TO IT'S ORGINAL VALUE
01780 ;*
01790 LD A,(TYPE) ; GET MODE FLAG WHEN ENTERED
01800 LD (40AFH),A ; RESTORE MODE TO ORIGINAL
01810 LD HL,(CSP) ; RESET CSP
01820 LD SP,HL ; TO IT'S ORIGINAL VALUE
01830 POP HL ; RESTORE REGISTERS
01840 POP DE
01850 POP BC
01860 POP AF
01870 RET ; RETURN TO BASIC
01880 ;*
01890 ;*  GNL -  GETS NEXT LINE OF BASIC PROGRAM PROM A FILE
01900 ;*         MOVES IT TO BASIC LINE BUFFER AREA AND THEN
01910 ;*         TOKENIZES IT.
01920 ;*         FILE IS ASSUMED TO BE IN ASCII FORMAT. LINES ARE
01930 ;*         TERMINATED BY A CARRIAGE RET. (0D).
01940 ;*
01950 GNL LD A,(PF) ; GET PASS FLAG
01960 OR A ; IS IT TIME TO READ SECTOR
01970 JR NZ,GNL5 ; NO IF NON-ZERO
01980 GNL3 LD A,0 ; RESET SECTOR BUFF INDEX
01990 LD (FI),A ; TO ZERO
02000 LD HL,(RCOUNT) ; PREPARE TO TEST FOR
02010 INC HL ; END OF FILE. BUMP COUNT
02020 LD (RCOUNT),HL ; OF SECTORS READ
02030 LD BC,0 ; READ NEXT SECTOR
02040 LD DE,DCB ; OVERLAY DCB ADDR
02050 LD HL,(BADDR) ; SECTOR BUFF ADDR
02060 CALL READ ; READ NEXT SECTOR
02070 LD A,1 ; RESET PASS FLAG
02080 LD (PF),A ; TO DATA IN BUFFER
02090 GNL5 LD DE,(RCOUNT) ; NOW TEST POE END OF FILE
02100 LD HL,(DCB+ERN) ; LAST SECTOR NO FROM DCB
02110 XOR A ; CLEAR CARRY FOR SUB
02120 SBC HL,DE ; HAS LAST SECTOR BEEN READ
02130 JR NZ,GNL10 ; NON-ZERO IF NOT LAST SECT
02140 LD A,(DCB+EOF) ; IN LAST SECTOR. END OF D
02150 LD B,A ; DATA REACHED YET?
02160 LD A,(FI) ; CURRENT SECTOR INDEX
02170 SUB B ; MUST BE LE TO EOD INDEX
02180 JR C,GNL10 ; CARRY IF NOT END OF DATA
02190 XOR A ; SIGNAL END OF FILE
02200 RET ; RET TO MAIN PGM
02210 GNL10 LD HL,(BADDR) ; SECTOR BUFF ADDR
02220 LD A,(FI) ; CURRENT BUFF INDEX
02230 LD C,A ; FOR 16 BIT ARITH
02240 LD B,0 ; DITTO
02250 ADD HL,BC ; CURRENT LINE ADDR IN BUFF
02260 LD DE,(40A7H) ; BA  LINE BUFF ADDR
02270 GNL15 LD A,(HL) ; MOVE LINE FROM SECT BUFF
02280 LD (DE),A ; TO BASIC LINE BUFF
02290 INC DE ; BUMP DEST ADDR
02300 INC C ; COUNT 1 CHAR MOVED
02310 JR C,GNL3 ; JMP IF LINE OVERFLOWS
02320 ;* ; SECTOR
02330 INC HL ; NO OVERFLOW, BUMP FETCH
02340 SUB 0DH ; ADDR. TEST FOR END OF LINE
02350 JR NZ,GNL15 ; LOOP TILL END OF LINE
02360 DEC DE ; BKSPC 1 CHAR IN LINE BUFF
02370 LD (DE),A ; AND TERM IT WITH A ZERO
02380 LD A,C ; SAVE ENDING BUFF INDEX
02390 LD (FI),A ; FOR NEXT LINE
02400 OR A ; SIGNAL MORE DATA

02410 RET ; RET TO CALLER
02420 ;*
02430 ;*  TOKENIZE LINE IN BUFFER. THEN ADD IT TO PST
02440 ;*
02450 ATOB LD HL,(40A7H) ; LINE BUFFER ADDR
02460 CALL 1E5AH ; GET BINARY LINE NO
02470 PUSH DE ; SAVE IT
02480 PUSH HL ; SAVE LINE BUFF ADDR
02490 LD HL,(LINE) ; BEG OVERLAY LINE NO
02500 RST 18H ; COMPARED W/CURRENT LINE
02510 JR Z,ATOB5 ; OK IF EQUAL
02520 JR NC,ERR ; ERR IF INCOMING LESS
02530 ;* ; THAN OVERLAY LINE NO
02540 ATOB5 POP HL ; RESTORE LINE ADDR
02550 CALL 1BC0H ; TOKENIZE LINE
02560 LD HL,(40F9H) ; CURRENT END OF PST
02570 PUSH HL ; SAVE ADDR OF THIS LINE
02580 ADD HL,BC ; ADD LNG OF NEW LINE
02590 LD (40F9H),HL ; START OF NEXT LINE
02600 PUSH HL ; SO WE CAN
02610 POP DE ; LOAD IT INTO DE
02620 ;*
02630 ;*   UPDATE POINTER TO NEXT LINE IN NEW LINE BEING ADDED.
02640 ;*   THEN MOVE BINARY LINE NO. FOR THIS LINE TO PST.
02650 ;*
02660 POP HL ; ADDR OF THIS LINE IN PST
02670 LD (HL),E ; LSB OF ADDR NEXT LINE
02680 INC HL
02690 LD (HL),D ; MSB OF ADDR NEXT LINE
02700 INC HL ; START OF BIN LINE NO
02710 POP DE ; BINARY LINE NO
02720 LD (HL),E ; LSB OF LINE NO
02730 INC HL
02740 LD (HL),D ; MSB OF LINE NO
02750 INC HL ; BUMP TO FIRST CHAR IN LINE
02760 EX DE,HL ; DE = PST FOR LINE
02770 LD HL,(40A7H) ; TOKENIZED LINE ADDR
02780 DEC HL
02790 DEC HL
02800 ATOB10 LD A,(HL) ; GET A TOKENIZED BYTE
02810 LD (DE),A ; MOVE IT TO PST
02820 INC HL
02830 INC DE
02840 OR A ; TEST OF EOS
02850 JR NZ,ATOB10 ; JMP IF NOT END OF STAT.
02860 LD (DE),A ; OF MACHINE ZEROS
02870 INC DE
02880 LD (DE),A
02890 RET ; RET TO CALLER
02900 ;*
02910 ;*   ERROR PROCESSING - RECOVER STACK SPACE
02920 ;*
02930 ERR POP AF ; CLEAR STACK
02940 POP AF ; CLEAR STACK
02950 POP AF ; CLEAR STACK
02960 LD HL,0 ; DEALLOCATE SECTOR BUFFER
02970 ADD HL,SP ; CSP
02980 LD BC,256 ; SIZE OF SECTOR BUFF
02990 ADD HL,BC ; COMPUTE NEW CSP
03000 LD SP,HL ; SETUP NEW CSP
03010 ERR10 POP AF ; CLEAR STACK
03020 POP AF ; CLEAR STACK
03030 POP AF ; CLEAR STACK
03040 POP AF ; CLEAR STACK
03050 POP AF ; CLEAR STACK
03060 LD A,2 ; CODE FOR SYNTAX ERROR
03070 JP 1997H ; GIVE ERR, RTN TO BASIC
03080 ;*
03090 ;*  CONSTANTS AND COUNTERS
03100 ;*
03110 LINE DEFW 0 ; OVERLAY LINE NO
03120 CSP DEFW 0 ; HOLDS CSP ON ENTRY
03130 TYPE DEFB 0 ; ORIGINAL DATA TYPE
03140 LFN DEFM 'F$' ; COMMON VARIABLE NAME
03150 DEFB 0
03160 DCB DEFS 32 ; OVERLAY DCB
03170 BADDR DEFW 0 ; SECTOR BUFF ADDR ON STK
03180 VARADR DEFW 0 ; VARIABLE ADDR ON STK
03190 CEPST DEFW 0 ; CURRENT END OF PST
03200 LVLT DEFW 0 ; LENGTH OF VLT
03210 SNVLT DEFW 0 ; START ADDR OF NEW VLT
03220 LSVLT DEFW 0 ; LENGTH OF SIMP VAR VLT
03230 PF DEFB 0 ; PASS FLAG
03240 FI DEFB 0 ; SECTOR BUFF INDEX
03250 RCOUNT DEFW -1 ; COUNT OF SECTORS READ
03260 END



312


	Cover
	Contents
	Chapter 1
	Introduction
	Level II And DOS Overview
	Memory Utilization
	The Communications Region
	Level II Operation
	Part 1 - Input Phase
	Part 2 - Interpretation & Execution
	Part 3 - Verb Action
	Part 4 - Arithmetic & Math
	Part 5 - I/O Drivers
	Part 6 - System Utilities
	System Flow During IPL
	Reset Processing (non-disk)
	Reset Processing (disk systems)
	Disk BASIC

	Chapter 2
	Subroutines
	I/O Calling Sequences
	Keyboard Input
	Video Output
	Printer Output
	Cassette I/O
	Conversion Routines
	Data Type Conversions
	ASCII To Numeric Representation
	Binary To ASCII Representation
	Arithmetic Routines
	Integer Routines
	Single Precision Routines
	Double Precision Routines
	Math Routines
	Function Derivation
	SYSTEM FUNCTIONS
	Basic Functions
	Internal Number Representation

	Chapter 3
	Cassette & Disk
	Cassette I/O
	Assembler Object Code Format
	Cassette Recording Format
	Disk I/O
	Controller Commands
	Disk Programming Details
	DOS Exits
	Disk BASIC Exits
	Disk Tables
	Disk Track Format
	Disk DCB

	Chapter 4
	Addresses & Tables
	Level II Internal Tables
	Level II External Tables
	Program Statement Table (PST)
	Variable List Table (VLT)
	DCB Descriptions
	Video DCB  (Address 401D)
	Keyboard DCB  (Address 4015)
	Printer DCB  (Address 4025)
	Interrupt Vectors
	Memory Mapped I/O
	Stack Frame Configurations
	FOR Statement Stack Frame
	GOSUB Stack Configuration
	Expression Evaluation
	DOS Request Codes

	Chapter 5
	A BASIC SORT Verb

	Chapter 6
	BASIC Overlay Routine

	Chapter 7 & 8

