VZDUL H 27 NOY Y DEC 1990

DOWwWN UNDER CLUE

Editor Treasurer
Harry Huggins Ron Allen
12 Thomas Str. 2 Orlando str.
Hitcham., 3132, Hampton.3188.
03873 1408 03-598 4534
Having seen the er... "MARVELS" of the ..er.. "PREMIER STATE", it is

quite a relief to return to the "SANITY" of a less boastful locale now the
finals fever is over!

Still it was quite interesting to see the "PREMIUM" shortcomings of the
adjoining state. In fact the only place I noticed Premium was on their
number plates, and that has been deleted from the newer ones. They are
learning!

The computer show was quite interesting, and well worth attending. On
display was the whole range of computers, from the mighty VZ to the "run of
the mill" IBM. The VZ was the only one I noted doing "something new". This
was in several fields, such as the Analog joystick, a mouse, speech synth.,
transmission of programs over phone lines with serial interface and modem,
a very accurate capacitance meter and an ohm meter,making use of the VZ's
(as yet not fully utilise) powers. These were further demonstrated at the
HVVZUG meeting on 5th Oct., at which I was warmly welcomed.

I have been assured that in due course all these will appear in the
HVVZUG newsletter, and maybe we will be permitted to copy them.

I do however return with several programs that will interest our next
meeting.

The other computers were doing their usual stunts, Databases, Spread
Sheets and Wordprocessors. The Commodores and Ataris were playing games at
which they are so good. Of note was a T.I. (Texes Instruments) controllig a
‘model train, entirely from a program.

I make mention of David's article, and I also mention details at end of
Games Column. It is quite an effort, and we would like to see more like it.
How about it members?

Meetings are held on the first Sunday of each month, now at 12 THOMAS
STR. MITCHAM. Any time after midday is a good time to turn up.

Last issue, in Letter to the Editor, the Data statements were missed
out. You will find them in The Hhackers Column. Sorry about that. I was
expecting another letter to editor this month, but it did'nt arrive. Also
looking forward to another SCREAM SHEET. The author should be well equiped
now to really get down to "DEAR HARRY"

A MERRY CHRISTMAS to you all, and a very satisfactory New YEAR.

A DV ENTURERE G A M E
W R I T I NG
F O R T H E vV Z2 2 0 O // 3 O O

By DAVID WOOD

If you have never written an adventure program before, it isn’t as hard as it
seems. It’s true that adventure programs are very long, and take a long time to
prepare and type in, but most of the actual program coding isn’t all that
difficult. The more complicated pieces of programming, like the sections of the
program that display room descriptions and contents, or allow the computer to
understand what the player types in, don’t vary much from program to program, and
can be copied when you come to write a program of your own.

There may be some of you that have never played an adventure game before. If
you haven’t, there are some good programs available on VZ Down Under’s Public
Domain tape #1, with a few other good adventures on the other tapes. There have
also been a few adventure programs published in this magazine — "The Thief of
Baghdad® (VZDU #1), ’Silver Mountain’ (VZDU #4 — VIDU #9) and "Merkfruit lodge’
(VZDU #23). '

With this is a sample adventure program for you to type in. it is
comparatively short, but it still won’t quite fit into an unexpanded VZ300. It
will fit if the following lines are deleted:
1130,1140,1160,1170,1180.

Unfortunately, when we try to add a few extras to the program, like saving and
loading of the players progress in the game so far and longer room descriptions,
you won’t be able to add these.

The saving/loading routines mentioned above haven’t been included at this
stage, because the PRINTH routine doesn’t work for all types of datasette! The
routines used are quite complex and so will be discussed in a separate article.
They are based on the memory dump article in VIDU #7, so enthusiastic tape users,
or disk users, can add their own routirnes if they want to.

This program won’t be available as public domain software as the second best
way to learn how to write an adventure program is to type one in. (The best way to
learn is to write orne yourself!). It may be made available on a swap basis for
other adventures, but I haven’t organised anything about this yet.

If you want to enjoy playing this game, type it in fairly soon as we will look
at the program in detail in later editions - this may give too many clues on how
to solve it! Type the program in very carefully as small bugs (mistakes) can take
ages to track down. As soon as you get tired or grumpy, STOP, save your program
to tape or disk, and resume typing it in later on. Save the program before running
it for the first time, as it has some machire code routines in it, which could
make the program crash if there are any mistakes in them.

Lastly, if you have any problems understanding this, or any other of these
articles, please write to me at:

RMB 1813
Samaria Rd
Benalla Vic 3673.

I will reply to all correspondence eventually, but this may take some time as
1 am doing year 12, and homework commitments must come first.
the first real article will appear in the rext edition.

b

There are several ways to design an adventure game. The method described in this
and the next few articles is the one I personally use, but this doesn’t mean it is the

"right" way. If you prefer to use a different method of design, or programming for that
matter, then do so.

Firstly think of an object for the game - a setting for it to take place in and
some major task for the player to perform. Common goals of adventure games are to
collect some treasure, to escape from somewhere, to rescue one or more people, to solve
a mystery, to 1lift a curse, or to save life on earth as we know it from total
destruction, Jjust to name a few. The setting can be in the past, the present or the
future - in space, in a magical land or an ordinary building. To summarise, the only
limit on tasks or settings is youw own imagination.

You then think of a character to be controlled by the player. Try to make it fit in
with the setting of the game. A barbarian hero would be well suited to a "Sword and
Sorcery" type game but would be rather out of place in a space adventure.

If you can’t think of a character or setting for your adventure, try stealing one!
Books, television and films could be used for this. You can always change the names of
them later on when you have got a few more ideas. (If you use the original names, there
could be a few copyright problems if you try to sell the game, but it is OK if you only
plan to write the game for your own use.) Another approach you could use is to play a
game from a different type of machine until you have solved it, then write it for the
VZ from scratch. This was quite succesfully done by Scott Le Brun, who converted the
game "King’s Quest" for the VZ300, by completely rewriting the program code. The result
was the program "Knight’s Quest", which is considered to be one of the best adventures
available for the expanded VZ300. There are more copyright restrictions with this
method, and the usual problems with lack of memory space.

Don"t waste time trying to think of something if you don’t feel like it. Games
designed like this aren’t usually successful. Wait for a while and you will probably
think of something later on.

Make sure the plot of your game is ore you are interested in. It takes a long time
to get from the design stage to the finished product, so if the game bores you, it is
guite likely that you will give up. I have quite a few maps lying around at home, of
adventures that never made it off the drawing board.

Once you have thought of a setting, goal and character, you need to think of some
other tasks .and traps for your player before finishing the game. Completing the major
task of the game should be the climax. This part should not be easy — it should reguire
a burst of truly creative thinking. For example, if the object of the game is to
destroy a malevolent robot, typing KILL/ SMASH/ DESTROY ROBOT should not work. Instead
use something more imaginative.
eg.

The robot sees you and begins to lumber slowly towards you.

What next? DROP BANANA PEEL

The robot has tripped over the banana peel and crashes to the floor.

You have angered the robot and he is about to struggle to his feet and

throttle you.

What next? EXAMINE ROBOT

There is a small slot in the back of his neck.

What next? INSERT CARPET FLUFF

The fluff has blown all his circuits and he now can’t move a single

motor. -

To add to this when the player goes through rooms containing carpet fluff or banana
peels, he/she is likely to consider them of questionable value and ignore them. Another
method would be leave the banana skin around a banana, and the player would be tempted
to eat the banana and throw the peel away.

Once you have thought of a few tricks and traps, you should know if you program is
going to work or not. If you can’t think of anything, it may be that youwr plot isn’t

(

feasible. You should be able to get some general ideas from playing other adventure
games, but never take something directly from another ore. If players have played this
adventure before, they will know the solution to the problem straight away, which will
make the game rather boring. (I have come across at least three adventures where you
have to GSPRAY bats or insects with an aerosol can.) Likewise, don’t repeat the same
problem in the one adventure.

Remember not to make the game so long that it won’t fit in the available memory or
too difficult to program. Don’t make the game so complicated that the player has never
seen anything like it before. Even though they want the game to be full of new and
original puzzles, they want it to be at least partly familiar. (Most people only read
a few different types of books, like spy stories or science fiction, but of course they
don’t want each one to be exactly the same.) Also remember to not be so devious the
player has no hope of solving the problem, and, of course, not make the game so easy
that it is boring and will be solved in the first few attempts. There is a difference
between being obvious and being comprehensible. Many commercial adventures state in
their advertising that they will take many weeks to solve, and this is a major selling
point. Don’t put too many braincrunching problems at the start of the game. Give the
player a chance to explore and "become part of the game" first. While difficult
problems are definitely needed, if they are placed at a stage before the player is
"hooked" into the game, he/she will probably get frustrated and give up.

You may like to place some random events in your program. If you do this, don’t use
them to kill the player for no apparent reason. Instead use them to produce different
secret passwords or combinations for each game, to randomly place an object that the
player has to find (or a monster), or to help the player overcome a situation, like
falling into a pit, where he/she would otherwise be killed. People who have played
"Castle Greystone" would know that they have to kill zombies that appear at random
around the castle with weapons that they may find in there. This is quite a reasonable
use of random events, except that often zombies appear and kill players before they
have had a chance to find a suitable weapon.

If you have thought of a few problems but are stuck for a while, start drawing your
adventure map and you will probably think of a few more ideas. When you have finished
thinking up your plot, write down all of the abject words the computer will need to
understand. Sort these into lists of "gettable" objects (Objects the player can / is
allowed to pick up and carry) and "ungettable" objects (objects that can’t be picked up
by the player). This is important because the computer needs to know where any portable
object is at any one time.

Some people think that any gettable object should have a use, but if the player
realises this, he/she will know that they have to have every object at one stage or
another, and this would ruin the banana peel / carpet fluff effect described earlier.

It is better to have some objects having uses, some having negative effects (like a
box of gunpowder that explodes and does you grievous bodily harm every time you go into
a room with a fire in it), and some that don’t have any use at all, except to confuse
the player ("How am I supposed to unbolt that useful looking sword from off the wall,
and do I really need a broken left handed Farenheit scale thermometer?").

Next make up a list of verbs for the player to use as input. Common verbs include
N,S,W,E (these are single letter abbreviations for the direction comands north, south,
past and west), HELP (lists all the verbs the computer knows), INV (lists what the
player is carrying), GET, LOK, EXAMINE, OPEN, LEAVE, DROP, UNLOCK,LIGHT, etc. The HELP
command is added because the player should have enough problems as it is, without
having to work out what word to use. There is very little more frustrating than than
knowing exactly what to do, but not knowing what word to use. If the correct words for
a situation 1is "SCALE ROPE" and the player types "CLIMB ROFE", the computer will
probably respond with something like "YOU CAN’T DO THAT." The most obvious reaction
from the player is to assume that the rope can’t be climbed, rather than rush down to
the bookshop and buy the latest Thesaurus. The fact is that different writers use
different words for the same situation. In two different adventures I have played, ore

insisted that vyou don"t PUSH boats - vyou have to LANCH them. The other didn’t
understand what I meant by "LAUNCH," but responded perfectly when 1 told it to PUSH the
boat. Ore exception to listing all your words is that if you have any words that would
make an action rather obvious, like "VACUM CARPET", you may prefer mot to list them,
but make the words fairly usual, and tell the player that some words have been omitted.

You might 1like to include two words for the same action, so there aren”t as many
occurrences of "YOU CAN'T DO THAT" or "I DON’T UNDERSTAND". examples of this are "LOOK"
and "EXAMINE",or "UNLIGHT" and "EXTINGUISH" (UNLIGHT isn’t a real word, but not many
people like typing or spelling big long words like EXTINGUISH). You might also like to
give them slightly different meanings. "LEAVE" and "DROP" could have the same functions
except things that are DROPped are more likely to smash, splatt, grow little green legs
and run away, etc. Avoid using words like "USE" or "KILL" - make the player be more
specific.

When you come to the stage where you are about to design your map, decide how many
rooms you are going to have, and draw up a grid of appropriate size. If you want to
have &4 rooms make the grid 8 x 8 squares wide, or if you want 80 rooms make it 8 x 10
squares wide, for example. The number of rooms depends on imagination and memory space.
You don"t have to use a grid, but make sure there is no more than orne exit from a room
in any direction - for example don’t have a room with two exits to the south, both of
which 1lead to different rooms, or things get rather confusing. (Locations in adventure
games are generally referred to as "rooms" even though they may not be - they could be
parts of real rooms, somewhere out in the garden or in a forest.) Make each sguare have
side length of 25 to 30 millimetres — an inch to a little bit over an inch for the
norn—metric minded — although you might need to make them smaller if you want the map to
fit on orne page. Draw your map in pencil at first because you may make some mistakes,
decide that you don’t want to use a part that you have already drawn in, or suddenly
think of something that would make your game much more interesting, only to find you
don’t have enough space for it on your map and have to either:-
¥throw your old map in the bin and start again.
¥leave out the idea.

You then decide where vyou are going to place your player at the start of the
adventure. If it is taking place in a house, a logical starting point is in the garden,
in orne of the outside sguares. Pencil in short descriptions for other rooms next. They
don’t have to be literary masterpieces - a few words for each room, like "bedroom',
"entrance hall"”, or "room with locked door", will do at this stage. Draw in walls for
every exit that the player can’t move through. This is usually a double line drawn
around the boundary of the map any anywhere else you decide is impenetrable. (Again,
these are referred to as "walls", although they could be a tall and thick hedge, a rock
fall or a cliff Fface.) Next place a nunber in the top left hand corner of each
square, moving from left to right, and top to bottom, starting at one, and ending at
64, or 80, or however many squares you happen to have. The reason why we start at one,
and not zero, will become apparent when we come to write the program. Many games which
start the numbering at zero read the room descriptions from memory into a data array,
which means that the room descriptions are then in two different places in the memory
at once, which in the case of the VZ is an appalling waste of precious memory. When
writing adventure games for the VZ there isn’t very much memory to play around with.

Next arrows are drawn in each square for the directions that the player can move
whilst 1n the sguare, and these are labelled with "N","S","W" or "E". North is usually
taken towards the top of the page. Following this you are ready to write down your
"movement codes," which will be needed for the program. If your map is a grid system,
for each room decide +for north, south, west and east (in that order) if there is an
exit in that direction, and write down a "O" if there is, and a "1" if there isn’t. For
example 1f in ore room there are exits'to the south and east, but not to the morth and
west, the movement code for that room will be "1010". Make up a movement code for each
room and write them down somewhere. If you aren’t using a grid structure, use "00"
for any direction in which there is no exit, and the room number of the destination for

i

directions in which there are exits. (You should use a leading zero for rooms one to
nine.) If for example there is a room with no exits to the south or east, an exit
north to rcom 8, and an exit west to room 17 the movement code in this case would be
"OE001700". This is where the advantages of the grid system shows most. If you make a
mistake with the movement codes, the player will find that they could move south to a
room, and then move north again, to find that the old room has magically disappeared
and been replace by another ore, which is rather frustrating. mistakes in the movement
codes using the grid system are more likely to be detected, and can be fixed up by the
programmer before anyone else plays the game.

Now you have finished the map, you can "play" your game - not on the computer of
course, but on paper and in your mind. Wander around the locations, pick up any objects
and try to complete the task you have set. You might discover that you have left out a
verb that you need, or that you have hidden the key behind the impenetrable hedge, but
you can’t cut through it because the whipper snipper is locked in the shed. It is much
better to find this at an early stage such as this, where the mistake can easily be
fixed, rather than discover it when the program is nearly up and running, where at
worst you could have to redesign some of your plot and a lot of your program to remove
the error.

Ore problem that ococurs with adventures, even for some of the larger and more
expensive computers, is what governs the items the player can carry. Some allow the
player to carry as many things as he or she likes, but often the rumber of items is
unrealistic unless the player has about seventeen arms. Others allow the player to
carry a set rumber of items. The problem with this becomes apparent if we consider an
example from the demonstration adventure with this set of articles. Imagine that the
player is only allowed to carry three things. This means that the player couldn’t carry
a key, a tape, a roll of sticky tape and a book at the same time, but could carry a’
large and very heavy rock, a fridge and a washing machine!

There are at least two possible solutions to this problem: -

- Provide the player with, or allow the player to find early on, somathing in

which anything found can be carried. A bag, a box, a backpack aor a wheelbarrow

are all suitable.
- Give each object a weight, and limit the weight a player can carry, rather

than the number of objects.
The weight limit could either be fixed, or be based on the strength of a player (if you
decide to have a strength rating in your game) at the time an attempt is made to pick
up an object. There is no need to use a particular scale, like kilograms or ounces.
Just rate your lightest object(s) as 1 unit, and if you think something is roughly 3
times as heavy, rate it as 3 units and so forth. Your scale doesn’t need to be
particularly accurate as long as it is reasonable.

In the last paragraph, I mentioned a strength rating. Although I won’t be writing a
great deal on how to program characters for role playing games, these are some of the
attributes you might like to include if you decide to create a role playing adventure.

STRENGTH: This is by far the most important attribute in an adventure game, and one you
should include even if you aren’t writing a role playing adventure. Not only does it
govern how much a player can carry, but it also indicates the player’s general state of
health. If the strength rating reaches zero, it’s the end of the line for the player.
When the player does something silly, like drink something poisonous, points can simply
be deducted rather than respond "SORRY YOU’RE DEAD" each time a wrong action is carried
out. OFf course there will be times that the player will be killed independant of the
strength rating, if he or she happens to fall off a nimety-nine foot cli+f, for
example. As time goes on, particularly if the player is carrying a lot of heavy things,
the strength rating may drop due to tiredness. This can be cured by leaving some food
around for the player to eat, or somewhere to sleep. (Originally the players state of
health was indicated by a separate HEALTH rating, but both are now usually covered by
the STRENGTH rating.) N

SKILL: In role playing board games, this is important for it determines how well a blow

is aimed, while strength determined how hard the monster is hit. In computer games,
this rating could be also used to decide the result of an action where the player has
to show some form of coordination, like firing a gun or swimming, for example.
(Ambitious programmers could even include a short arcade game-type test of skill before
the start of the game to give a representative skill rating.)

HEIGHT and WEIGHT: The main uses of these are to determine whether players are big
enough to carry certain objects (irrespective of strength), or if they can cross
dangerous territory, or hide somewhere. Very few hobbits can use six foot swords, but
they would have an advantage over: giants when crossing rotten wood bridges or hiding in
hollow logs. '

INTELLIGENCE: This is mostly used to determine the character type of a player during
character gerneration, with wizards being generally more intelligent than barbarians. It
also decides if the player can learn new skills during the game.

MAGIC ABILITY: The name says it all. Some character types will be able to do magic, and
others won’t.

WEAL TH: Once again the name says it all. This is used not only to indicate a player’s
success, but also to allow the player to buy things he or she might need during the
game.

LUCK: This can be used to overcome situations when the player might otherwise be
killed. One good method of testing a player’s luck that I came across chooses a random
number between one and ten, and compares it to the player’s luck rating. If it is lower
than the luck rating, the player survives and the luck rating is decreased by on e
point. If not, it’s the end for the player. Luck is only tested when the player does
something stupid, and it gives the player a chance to suwvive.

There are several methods of generating a character.

- Have preset values for each attribute. This makes the game, along with non-role
playing adventures useful only until it is completed, and then it is "dead." however
this is by far the easiest situation to program, and if your program is good enough,
this shouldn’t matter.

- Have several character types, each with their own attribute values. This gives
several different situatons for your game.

- Have the same situation as above, also give the player a rumber of modification
points. with which (s)he can add points to the various ratings. Also allow the player
to take some points off some ratings and add these to others. With this method you
would also need a subroutine which prevents particular ratings going above or below
maximum or minimum values, and another to change the character types if the ratings are
changed drastically.

- Have all ratings randomly generated.

Before you are ready to type in the program, you should have all the computer
responses to yow verbs and nouns prepared. Anything the computer doesn’t understand
will be covered by a few different "I DON’T UNDERSTAND *SMASH’" or "TRY SOMETHING ELSE"
messages. Just make suwe you make it clear what it is that the computer doesn’t
understand. There should also be a general message for situations where "YOU DON’ T HAVE
THE BUCKET" (or anything else for that matter). Not only should you have messages for
verb-noun combinations that are essential for the game (all the "OK" and "YOUz TOOK THE
GOLD" messages), but also for the more irrelevant or silly combinations, you make
equally silly replies - +for "SWING ROPE" you could reply "THIS IS NO TIME TO PLAY
GAMES!" There is no reason why you shouldn’t have as much fun writing the game as
others have playing it! You might also like to have some interesting replies to the
coarse language that some adventurers enter (Tsk Tsk) when they are finding the going

hard.
You should also be composing your room descriptions. These should contain all the

7

information the player needs to know about the room (except for the exits and the
visible objects which are covered elsewhere, and anything the player needs to LOOK
far).

Once again, as with most other aspects of adventure game design, I can’t tell you
exactly what to do here .Check the room descriptions (or anything else for that matter)
of other adventures but remember that most players prefer original adventures. You
should be able to get a vague idea of the lengths that you should have for each
description and perhaps the style.

If you want to have longer descriptions the text really starts to chew up the
memory. You may be able to squeeze longer descriptions in using a method of tokenising,
which stores commonly used words or phrases in the data statements as single character
tokens - (the inverse character set), in much the same way that programs are stored in
BASIC. This allows for much longer descriptions in the available memory, but looking
for common words, assigning a token for each and using these in the data statements is,
to say the least, rather tedious. You may still think it is worthwhile because of the
atmosphere a well written, but slightly longer, room description can add to a game.
This method will be discussed in more detail in a later edition. Even if you do use
this method, you must limit your descriptions to a length of 235 characters or less.
Not only will longer descriptions leave little room on the screen for possible exits,
visible objects, and a strength (or any other) rating, but they will also gererate a
"STRING TOO LONG ERROR"

if you aren’t going to use this method, you should note that most room descriptions
can begin with the waords "You are"s followed by "In", "On", "At", "Near", aor "By", then
followed by "A","An","The" or "Some". You can therefore leave the "You are" out of the
description and add it later on in the program, and substitute the rnext two words with
a number, as was done in the demonstration program. If the third or fourth word of some
descriptions are not one of those above, use a code for a blank - "" - instead.

This Jjust about brings to an end the discussion of designing your program. You

should now be ready to start designing the program code. Yes, it’s more planning!
"I don’t need to plan my programs," you might say. However, even if you can write all
your other programs without planning, if you try this with an adventure, you will
probably leave things out and make the program a tangled mess. Also you will have
difficulty tracking down bugs (the ones that don’t cause error messages) because you
have forgotten exactly where you put that particular section, or that if you want to
add some extras to the program, like sound effects, you might find that you have run
out of line numbers.

If you think that means you have to draw a flowchart, don’t bother. I tried once,
and it quickly began to resemble a bowl of spaghetti. Even if you manage the flowchart,
it may be difficult to follow, or you could have a nervous breakdown when you discover
for the forty second time that you left something out, and because there isn’t any room
for it, you have to throw it away and start again. You should instead split the program
into manageable modules and plan each one separately. these are: -

LOAD ANY MACHINE LANGUAGE ROUTINES INTO MEMORY.

" BRANCH TO INITIALISATION SUBROUTINE: (The initialisation is placed at the end of the
program because each time the program interpreter encounters a GOTO statement it goes
back to the start of the program and looks through all the line numbers until it finds
the right orne. As this is only used once, considerable time is saved by placing it at
the end of the program.)

DISPLAY THE CURRENT LOCATION, EXITS, ETC.

ACCEPT PLAYER INPUT AND PROCESS IT INTO VERB AND NOUN.

DEAL WITH ANY INPUT THAT THE COMPUTER DOESN'T UNDERSTAND.

GREAT FLOOK OF IF... THEN STATEMENTS BRANCHING TO VARIOUS VERB ROUTIMNES: (or if you
have an Extended BASIC - some ON - GOSUB statements. Don’t ask me why the desigrers of

=

the VZ decided to mask this command when it was already present in the ROM.)

DEAL WITH ANY EVENTS THAT HAPPEN INDEPENDANT OF THE PLAYER’S ACTION: (For example,
check to see if the player has died.)

SCREEN DEALING WITH THE PLAYER QUITTING OR DYING.
SUBROUTINE FOR PLAYER MOVEMENT.

INDIVIDUAL SUBROUTINES FOR ALL OTHER VERBS.

INITIALISATION: (Dimensioning arrays, etc)

DATA STATEMENTS: (These are placed at the end of the program for the same reason as the
initialisation.)

Here are just a few extra hints for typing in your program. Structural programming
enthusiasts will probably lynch me for saying a few of these, but our main concern is
memory, and not readability.

- Use multiple statement lines: This saves memory as each line takes five bytes just
to exist. Somewhere around half - perhaps even more - of the lines in an adventure are
IF... THEN statements so if you don’t use them you will have to waste more memory
repeating the condition several times, or have a program that leapfrogs all over the
place (which structural programmers probably dislike even more.)

For example:

1790 IF(H=7962 OR H=7662)AND F (44)50 AND C(1)=0 THEN R$="HE TAKES IT": F(&4)=1: F(44)=
f(44)-1: RETURN :

If vyou didn”t use a multi — statement line here you would have to list the long set of
conditions many times.

- If you use REM statements, Don’t GOTO or GOSUB directly to that line: You will want
to remove these eventually; either because you are running low on memory, or because
you have Ffinished the program and you don’t want to make it too easy for peeping
adventurers to cheat! When you do this, you don’t need to mess around changing lines in
order to avoid "UNDEF’D STATEMENT ERRORS."

—- Leave out LETs, unnecessary spaces, etc: Not only do these take up extra memory, but
they also take up space in the 64 characters you can have for each line, meaning you
have to start new lines which waste even more memory.

In the next few editions, we will look at adding a load/ save feature to your game,
and the tokenised room descriptions mentioned earlier, then we will examine each
section of the program in detail.

SECTION ONE

. / yOU NEED A
70 %€ |
— —— s e
j i v T IN HERE.
‘ BEDQOoEr%zs V LOVNGE ?/ svoy 7/ BACKk pooe | SANP MVEMENT copis
! (preorcary || WITH BoOKSHELF (s tHooL FOLDER) SEP L law ') 101!
{cOMpuTER W o
REmMOTE contua) | 500&5' s> ¢ . Jy&- (00w 2) 10)
{ AR . reisTING) s 2ch) S 2 110l
: ¥ (s THCKY TRPE) v v_ | (0 v 0
) 7"””"'] — 1, AY | 4 wiolt
; t;) 7 N g LAUNDRY - / N B/N N 5) | 0
PBOARD ,/ oPEN Dooa. o1l
ENTRRNCE TO LOVNGE v / BACK Doon, b0
‘ Bp,o'fHER s WITH STERED)) 7) o0\]
: Beproom « tTAPE) AT, . oM
. f—OCKED- (€ AR MUFF9 (Mﬂsp) 5 '5 G) 100”
| ; : v & S.aNu[y
: 4 n/ & iTi / 10} 00 1]
: V 4 y : /s /Roomuu:m | NWM}%WF i) 0o 10
: HALL, eockeP KT HEN | LAVNORY AL . CATFLAP/ 120000
§ DooR WEoT 7O : |
: gathoom, EB W (o o0y Ep 4V // / 1300
; 00 I g/ |)oo”
: TOILET. (FogD) ! . / 3 I
i v v (waSHING MACHINE) | y llg gg:o
; o
b 4 17 4 i8, %wm WITH 100
g N / N /Hnu— \ATILT‘/‘; SET OF PRAWE Qg})‘o’ou
b ENTRANCE pILE OF » law % o) 010)
g HAL E® @AW HAL EReW . E &Lo)ouo .
. l . ; L) 2)3‘)"&0,
1207 £ A ATT - i % u !
' yﬂo(:l? Dok 27 H 8Y somg /GARDF.N 23 uo%
G pPRTH . BISHES (LARDEN G NOME) Wol
(DOOR) y cp | 4w £t idw 2,‘;.)uo v
ol Emid (LARGE ROCK)
(KEY) { BONE]) (GREMASK) (START)
j / o
VERBS NOVNS
SWE - HSTING L
! ,HE\}‘—P map SECTION TWO YERRS NOUNS
! C:; Tﬁ'PE NS Wity lr'yl,erzp
GET sg:g I/ a1 comPura.yco RNER Wint H&.& ThPE
Ezomwi STCKY TAPE DESK . A BOX o BFggK
lﬁRog GASMASE. wett GET 'sTnczvaE
o LEAVE MovsE (vz 3$00) LEAVE V2300
© OPEN AR (moNITOR) | v DroP DA TASETTE
{ READ ERROVRR, 4 TVoE ba
‘} UNLOCK - RoNE 7?9011 OF : N EXAMINE Tog
5 LIaH™ KEY REDROOM wmi 1 wNexT 7O LOOK %}:K
| UNLIGHT e 1ovs 0F YN plee BEP Eg/:p Bep
| EXTINGUISR TpRest CECTION?2 ~17E) SAVE PROGRAM i
; Do - Raew (S TPRT (oATASET QuIT |
i \g;:o FRID,E
GIVE S’oﬁf”""" MACHINE | pouEMENT CODES
WEAR CAT 00720
Kidk FOLDER) 0010
EAT STER ww: 2)040)
- START E{’ﬁ:ﬁ'&e 0040
PLP:E‘E HOME WoRK ’5) 20 03
, % e xusé-ies s) .
_Hye Doog mAT™ papueg.

LET”S INVESTIGATE SOUND ON THE VZ.o

PART IT
by Bob Kitch.

Last time we produced the Star Wars Theme using a few simple BASIC
commands. Let’s analyze this action a little further and see what
insight this gives us. Recall that there were a few shortcomings or
limitations in using the SOUND command.

SOUND COMMAND.

Quite a lot happens in the BASIC Interpeter when the SOUND command
is used.

As the Command Interpeter is scanning through a line in the BASIC
Program Statement Table, it is searching for the SOUND token 9EH. Upon
finding this token, it transfers control to the Verb Action Routine
for the SOUND command located at 2BFSH to 2C71H. Perhaps you would
like to Disassemble this portion of vyour ROM and decode it? This
section of code looks for the pitch and duration values in the Program
Statement Table that form part of the command.

Remember that these values must be in the range of 1 to 31 and O
to 9 vrespectively. The routine mentioned above, checks these values.
Where does it pick up the correct frequency and duration toc pulse the
speaker?

Two tables of values are embedded in the ROM. A Freguency Table
occurs from O2CFH to O30CH. These are two-byte entries and correspond
to the notes A2 to D#S. (31 notes and 62 bytes.) At 0361H to 037FH
another 31 byte table exists for the 31 tones. These values correct

the duration for the frequency value read from the larger table.

The Verb Action Routine then calls a couple more subroutines in
ROM to switch bits 0 and 5 in the Output Latch at 6800H., These are the
"low-level” routines that control the piezo speaker. We are now very
close to the hardware of the VZ.

The low-level code consists of three subroutines commencing at
3450H to 3483H in ROM. Perhaps some more Disassembly would be
illuminating at this point? The main routine is at 343CH to 3468H. On
entry, the HL register contains the frequency, and the BC register
contains the duration. The entry point from the Verb Action Routine is
at 3I469H to 3483H where the "cycling" of the Output Latch occurs to
achieve the sound. A third BEEP routine occurs from 3450H to 345BH.
This section sets the HL register to 160 and the BC register to 6 to
provide a beep. This sound is heard every time a key is pressed on the
keyboard - so this routine is called quite often.

SOUND EFFECTS PROGRAM.

To 1illustrate some of these ideas, the accompanying program is
useful. A series of sound effects are generated by manipulating the HL
and BC registers of the Z80 and by calling the sound routine located

1=

[ERATN

10
20
IO
40O
SO
SO
7O
s8O0

Q0 ’
100
110
120
121
122
130
140
150
160
170
180
1@0
200
210
220
230
240
250
260
270
280

at 345CH in ROM. Note that this is a distinctly different way of
making a noise compared to the SOUND comnand in BASIC. Furthermore,
note the variety of sounds that can be produced. The Sound Effects
program is more "interesting" than the previous Star Wars melody.

The Sound Effects program uses the USR() statement to connect the
BASIC program to the ROM calls. It is an extremely useful and powerful
technique. How many of vyou are familiar with it? It is poorly
explained 1in the VZ Manuals. The 12 bytes of machine code are set out
in lines 130 to 180.

The program 1is also set out to illustrate the "looping"” that
occurs to place certain values into the HL and BC registers. This form
of coding clarifies the procedures.

Next time we will discuss directly switching the latch at 6800H
using our own machine code routinme - not the one’s in ROM. Notice how
we are 'getting closer to the hardware" and obtaining more control
over the sound output.

> KK K M K ok ok K vk S K 3K ks ok K K K Sk ok K K
> XK 2k SOUND EFFECTS b P
z b P 3 LE VZ H# 1 O b R
> b 3 R.B.K. BTO/1 /865 XX
g X K AL TERED 2&6&6/8/.20 X X
i X XKRBK, ANDREW WILLOWSX X
> XXKIKEN CLARKE (NZ)H * Xk
> KK K OK K Kk ok K K K K K K K K K K K K K K
XXXXXPOKE IN M/L ROUTINEXX kXX

FOR T%=-28687 TO -28676 :”POKE INTO BFF1H TO 8FFCH.
READ D%:POKE T%, D%

NEXT T%

PT%=-28685 :”ADDR. FOR PITCH (L-REG)

DR%=-28682 :>ADDR. FOR DURATION (C-REG)

DATA 229 7 PUSH HL

DATA 033,160,000 :” LD HL,O00A0 PITCH 160

DATA 001,003,000 :’ LD BC,0003 DURATION 3

DATA 205,092,052 7 CALL 345C

DATA 225 7 POP HL

DATA 201 ' RET

POKE30862,241:POKE30863,143:SET 788E/FH TO F1/8F FOR USR().

'xx*XXMAIN MENUXX XX X
CLS

PRINT: PRINT“ B=Tal R R e e PRINT
PRINT " [k] o e o] mmuwmmmw"-
PRINT"[!H;WMM e 5 ;
PRINT" mm&%wm&mmwmm&mmmmw" ;
PRINT" Mmmmuwmﬂmwm muLMMW" ;
PRINT " ReEH s10 s =1 -8 T £ 3 ! i FReRE
PRINT " [=18) e :mmm;mmmwmw

14

290
320

330

340

400

410

420

430

440

450

460

470

510

1100
1110
1120
1130
1140
1150
1160
1200
1210
1220
1230
1240
1250
1260
1300
1310
1320
1330
1340
1350
1360
1370
1380
1400
1410
1415
1420
1425
1430
1435
1440
1445
1450
1455
1460
1465
1470
1500
1510

1320
1330

1340

1550
1560

PRINT@466, " "y
PRINT@448, "ENTER OPTION # ";:INPUT OP$

POKE DR%,3 A
» XXXk X XKBRANCH TO CHOICEXXKXX
IF OP$="A",1100 ELSE IF OP$="B", 1200
IF OP$="C",1300 ELSE IF OP$="D", 1400
IF OP$="E",1500 ELSE IF OP$="F", 1400
IF OP$="G",1700 ELSE IF OP$="H", 1800
IF OP$="1",1900 ELSE IF OP$="J",2000
IF OP$="K",2100 ELSE IF OP$="L",62200
IF OP$="M",2300 ELSE IF OP$="N",210
GOTO320
* XXXXXkDECAYING ZOOPXXKXX
CLS:PRINT@232, "DECAYING ZOOP"
FOR T%=1 TO 255 STEP 4 :”LOWER PITCH - FIXED DURATION.
POKE PT%,T%
X=USR (0)
NEXT T%
GOTO 210
* XXXX K INCREASING ZOOPXX XXX
CLS:PRINT@232, " INCREASING ZOOP"
FOR T%=255 TO 1 STEP -4 :’RAISE PITCH - FIXED DURATION.
POKE PT%,T%
X=USR (0)
NEXT T%
GOTO 210
* XX KX XRANDOM BEEPSKAKKX
CLS:PRINT@234, "RANDOM BEEPS"
POKE DRY%, 10 : * CONSTANT DURATION.
FOR Y%=1 TO S0 :’D0 SO REPETITIONS - VARY PITCH.
T%=RND (254) +1
POKE PT%,T%
X=USR (0)
NEXT Y%
GOTO 210
KKK K KWAVES K KK X X
CLS:PRINT@237, "WAVES"
POKE DRY%,1 :’FIX DURATION.
FOR Y%=1 TO 10 :”DO 10 OSCILLATIONS.
FOR T%=1 TO 10 :* LOWERING PITCH.
POKE PT%,T%
X=USR (0)
NEXT T%
FOR T%=30 TO 1 STEP -1 :’RAISING PITCH.
POKE PT%,T%
X=USR (0)
NEXT T%
NEXT Y%
GOTO 210
* XXX XX INCREASING PHASORKX XXX
CLS:PRINT@230, " INCREASING PHASOR"

FOR_Y%=20 TO 1 STEP_-1 :? INCREASE STARTING PITCH.
FOR T%4=Y%Z TO 1 STEP -1 :’DECREASE NUMBER OF TONES.

POKE PT%,T%

:’8SET DURATION TO 3 ON ENTRY.

X=USR (0)
NEXT T% 1

| —d i
¥ I
I
H

1570
1580
1600
1610
1620
1630
1640
1630
1660
1670
1680
1700
1710
1720
1730
1740
1750
1760
1770
1780
1790
1800
1810
1820
1830
1840
1850
1860
1870
1880
1890
1900
1910
1920
1930
1940
1950
1960
1970
1980
1990
2000
2010
2015
2020
2025
2030
- 2035
2040
20435
2030
2035
2060
2100
2110

NEXT Y% N
GOTO 210 Sk
» XXX X XDECREASING PHASORK X Kk X

CLS:PRINT@230, "DECREASING PHASOR"

FOR Y%=1 TO 20 : " DECREASE STARTING PITCH.
FOR T%=1 TO Y% : * INCREASE NUMBER OF TONES.
POKE PT%,T% :
X=U3R(0)
NEXT T%
NEXT Y%
GO0TO 210

P KKK KKUFO LEAVINGXXKXX

CLS: PRINT@233, "UFO LEAVING"

TY%=61 :*SET PITCH.

FOR D%=60 TO 1 STEP -1 : * DECREASE DURATION.
POKE DRY%, D%
POKE PT%,T%
TY=T%-1 +*LOWER PITCH.
X=USR (0)

NEXT D%

GOTO 210

P KXXXKUFO LANDINGX XXX X

CLS:PRINT®233, "UFO LANDING"

V=1 : :’SET PITCH.

FOR D%=1 TO 60 : * INCREASE DURATION.
POKE DR%,D%
POKE PT%, T%
Ty=TY%+1 :’RAISE PITCH.
X=USR (0)

NEXT D%

GOTO 210

P KXKKKBUZZERKK X KX

CLS:PRINT@236, "BUZZER"

POKE DRY%,3

POKE PT%, 60

FOR Y%=1 TO 100 :”SOUND TONE 100 TIMES.
X=USR (0)
FOR D%=1 TO 5 : * SMALL DELAY.
NEXT D%

NEXT VY%

GOTO 210

P KKXKKSHIP SIRENKKXXK

CLS:PRINT@234,"SHIP SIREN"

POKE DRY%,8 :’FIX DURATION.

FOR Y%=1 TO 10 :*D0 10 REPEATS.
FOR T%=200 TO 80 STEP -8:’ INCREASE TONE.

POKE PT%,T%
X=USR (0)

NEXT T%
FOR D%=1 TO 150 - :* DELAY BETWEEN REPEATS.
NEXT D%

NEXT Y%

GOTO 210

* XXX KXBURGLAR ALARMXX XXX

CLS:PRINT@233, "BURGLAR ALARM"

2120 POKE DR%,233 :’FIX DURATION TO MAX.

2130 FOR Y%=1 TO 3 :’DO 5 CYCLES.
2140 POKE PT%,50 :” TONE HI.
2150 X=USR (0)

2160 POKE PT%,&60 :’TONE LO.
2170 X=USR (0)

2180 NEXT Y%

2190 GOTO 210

2200 " XxxXXXPOLICE SIRENXXXXX
2210 CLS:PRINT@233,"POLICE SIREN"

2215 POKE DR%,9 :’FIX DURATION.

2220 FOR Y%=1 TO S D0 5 REPEATS.

2225 FOR T%=200 TO 80 STEP -4

2230 POKE PT%,T% :"FAST RISING PITCH.
2235 X=USR (0)

2240 NEXT T%

2245 FOR T%4=80 TO 200

2250 POKE PT%,T% :"SLOW FALLING PITCH.
2255 X=USR (0)

2260 NEXT T%

22635 NEXT Y%

2270 G4OTO 210

2300 ’ XXX XXTELEPHONE XX X X %

2310 CLS:PRINT@234, "TELEPHONE"

2315 POKE DR%, 15 :’FIX DURATION.

2320 FOR Y%=1 TO 5 :’DO0 5 REPEATS.

2325 FOR D%=1 TO 2 :>SOUND DOUBLE RING.
2330 FOR T%=1 TO 8 :D0 B WARBLES. |

2335 POKE PT%, 100 :’LO TONE.

2340 X=U8SR (0)

2345 POKE PT%,50 :”HI TONE.

2350 X=USR (0) '

2355 NEXT T%

2360 FOR T%=1TO 50 :"PAUSE BETWEEN DOUBLE RINGS.
2365 - NEXT T%

2370 NEXT D%

2375 FOR D%=1 TO 400 :’PAUSE BETWEEN REPEATS.
2380 NEXT D% -

2385 NEXT Y%
2390 GOTO 210 ,
10000 CLS:PRINT"ERASING SOUNDS":ERA"SOUNDS"
10010 PRINT"SAVING SOUNDS" : SAVE"SOUNDS"
10020 END

HACKERS AND PIRATES.

_ This information was sent in by Ben Hobson, who thinks it may be
of Interest to others. '

I have found the problem with SPRITE GENERATOR crashing things. In
my case DOS. - ‘

I have not tried it, but possibly relocate DOS or Extended Basic
directly after the SPRITE routines, as maybe Sprite Generator uses
Hi-Mem, or it may alter IX or IY registers. Therefor a complete
rewrite of Sprite Generator or of EXT. BASIC may be needed.

b Ry

TRADING POST
"EPROMS for EXTENDED D0OS. and BASIC
Are available from
Bob Kitch
7 Eurella Str.
KENMORE Q'ld. - 4069
FOR SALE

PRINTER GP 100. VZ compatiable. New ribbon. $100.
Apply Editor.

T e VR SRR ——

TO SWAP: VZ 300 B@Bi-(no case or keyboard), Joystick interface with 1 .
joystick, 9 x 6116 2k RAM chips,:Z280A, 2716 EPROM, 2 x 482764 EPROMs,

Plus various ICs, eg 741s138, 741s157. All chips are socketed (except

Z80A, EPROMS) and are from a defunct microbee. (The VZ300 does not work but

only needs a Ul4 i.c. Perhaps a good One. may be desoldered from one of the
-01d-VZ300s the Editor has for sale. o

FOR: VZ200 in workingrorder. (with or without keyboard)

If this does not please: you PLEASE contact me anyway as I have many other'
" goodies I will include to make the: deal. '
Ben Hobson , P.O. BOX 255, QUIRINDI, 2343 or. phone . (067) 462076 after 4pm.

“ * k%

OTHER V 7 USER GROUPS

H.V.V.Z.U.G =L DISKMAG

P.0.Box 161 T»f?f‘ P.0.Box 600.
JESMOND NSW.2299. Taree NSW. 2430.
CENT.VIC.COMP.Club . BRISBANE VZUG
24 Breen St.. 63 Tingalpa ©St.

BENDIGO VIC 3550 ' WYNUM West. Q'ld. 4178

“*What a day! The computer broke
down and we all had to think!"

REELE:

